
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

101

 Verification of Data Reliability and Secure Service for Dynamic Data in

Cloud Storage

Nithiavathy.R
1
, Suresh.J

2

 Department of Computer Science &Engineering, Coimbatore Institute of Engineering and Technology
1,2

Abstract

Cloud computing has been the genuine solution to

the rising storage costs of IT Enterprises. The cost

of data storage devices is too high rate at which data

is being generated, where the enterprises or

individual users to frequently update their hardware

or software. The data outsourced to the cloud

would help in reducing the maintenance. The

user’s data are moved from cloud to large data

centers, which are located remotely which does not

have control over it. Hence there is a security

breech which has to be resolved. To address this

issue, we propose an effective method to achieve

secure and dependable cloud storage by using

distributed storage integrity auditing mechanism,

which incorporate homomorphic token and

distributed erasure-coded data for dynamically

storing data. The proposed design allows the user

with lightweight communication and computation

cost. To maintain reliable cloud storage correctness,

and to locate the misbehaving server in which the

data are frequently changing in cloud. It is an

efficient method for dynamic operation which

include erase, append, and block modification and it

very effective in fighting against server colluding

attacks, byzantine failure, malicious data block

modifications.

Keywords

Error localization, data dynamics, Cloud Computing,

Data Integrity, storage, Audit.

1. Introduction

Cloud is a large scale pool of computing service. The

Cloud helps enterprises are dynamically scalable

abstracted computing infrastructure that is available

on-demand and on a pay-per-use basis [1][2]. This

model saves the IT teams from use its huge capital on

infrastructure. The growing network bandwidth allow

the users to accesses a reliable yet flexible data and

software that reside in remote data center spreads

wide in the globe. Now both internal and external

threats for data integrity still exist more in cloud

[1][2].

To make sure of the correctness of storage without

the users possessing their own data, it is difficult to

address all data security threats in cloud storage as all

concentrated in single server scenario and not

consider dynamically changing data and its operation.

By using distributed protocols for maintaining

storage correctness in the multiple server or peers [3].

We propose a concrete, flexible and effective scheme

with explicit dynamic data support to maintain the

integrity of the user data in the cloud. We use

erasure- correcting code in the distribution of the file

in the cloud to avoid redundancies which increases

the data dependencies. It overcomes the

communication overheads of the traditional

replication based techniques of file distribution.

Token utilization is used with distributed verification

of the erasure –coded data which ensures the storage

correctness and data error localization. The data

corruption that has been detected during the

verification of the correctness of the stored data is

localized, which guarantee the data error localization

simultaneously. It identifies the misbehaving

server(s) [4].The verification is done without explicit

knowledge of the data files. The user can check the

integrity of data‟s in the cloud storage. The main part

of the paper can be structured as the following

aspects:

• Compared to its predecessors they only

provide binary results about the data storage

status across the distributed servers, the

protocol used in our work provides point of

data error (i.e. Error Localization).

• We provide secure and efficient dynamic

operations on data blocks like update append

and delete.

• The security and performance analysis

shows the proposed scheme is highly

efficient and resilient against Byzantine

failure, malicious data modification attack,

and even server colluding attacks. The paper

is discussed as follows: Section 2 shows the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

102

detail view of the system and adversary

model, our design, goal, and notations. In

section 3 we describe our scheme. Section 4

shows how our scheme supports dynamic

data operation; Section 5 discusses the

security issues and performance analysis.

Finally, Section 6 is concluded with remarks

of paper.

2. Problem statement

A. System model

The architecture for secure data storage is illustrated

in Figure 1. The various network entities can be

described as follows:

1. User (owner): Users may be a person or an

organization that have data to be stored in the cloud

and rely on the cloud for data computation.

2. Cloud Service Provider (CSP): A CSP has

significant resources and expertise in building and

managing distributed cloud storage servers, owns and

operates live Cloud Computing systems.

3. Third –party Auditor (TPA)(optional): Who is

expertise and capabilities that the user does not have

and they are trusted to access and expose to the risk

of cloud storage service for users. Data storage in a

cloud is where the user stores his data through a CSP

into a set of cloud servers, which are running

concurrently, cooperated and in distributed manner.

The redundancy of the data can be employed with

technique of erasure-correcting code to further

tolerate faults or server crash as user‟s data grows in

size and importance[5] [6]. The most general forms

of operations we are considering are block revise,

erase, insert and affix. The users do not necessarily

have the time, feasibility or resources to monitor their

data; they can delegate the tasks to an optional trusted

Third Party Auditor of their respective choices [7]. In

our model, the user communication channels between

each cloud server and the user is authenticated and

reliable, which can be achieved in practice with little

overhead.

Fig 1: System model

B. Adversary Model

All kinds of threats toward his cloud data integrity

are found in the adversary model from the user„s

view. The cloud data do not reside at user‟s local site

but at CSP‟s address domain, these threats can come

from two different sources: internal and external

attacks. For internal attacks, a CSP can be self-

interested, untrusted, and possibly malicious; it may

also attempt to hide a data loss incident due to

management errors, Byzantine failures, and so on.

For external attacks, data integrity threats may come

from outsiders who are beyond the control domain of

CSP, for example, the economically motivated

attackers. They may compromise a number of cloud

data storage servers in different time intervals and

subsequently be able to modify or delete users‟ data

while remaining undetected by CSP.Therefore, we

consider the adversary in our model has the following

capabilities, the cloud data integrity is maintained by

capturing both external and internal threats.

Continuously corrupting the user‟s data files by

adversary, in the individual storage servers can cause

loss of integrity of data .The server can pollute the

original data files by modifying or introducing its

own fraudulent data to prevent the original data from

being retrieved by the user. This corresponds to the

threats from external attacks. In the worst case

scenario, the adversary can compromise all the

storage servers so that he can intentionally modify

the data files as long as they are internally consistent.

In fact, this is equivalent to internal attack case where

all servers are assumed colluding together from the

early stages of application or service deployment to

hide a data loss or Corruption incident.

C. Design goal

To design efficient mechanisms for dynamic data

verification and operation and achieve the following

goals:

i. Storage accuracy: to ensure users that their

data are indeed stored appropriately and kept

intact all the time in the cloud.

ii. Fast localization of data error: to

effectively locate the mal- functioning

server when data corruption has been

detected.

iii. Dynamic data support: to maintain the

same level of storage correctness assurance

even if users modify, erase or affix their data

files in the cloud.

iv. Dependability: to enhance data availability

against Byzantine failures, malicious data

modification and server colluding attacks,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

103

i.e. minimizing the effect brought by data

errors or server failures.

v. Lightweight: to enable users to perform

storage correctness checks with minimum

overhead.

D. Notation and preliminaries

F – Data file to be stored. F is denoted as a matrix of

m equal-sized data vectors, each consisting of l

blocks.

A – Scattering matrix used for coding.

G – Encoded file matrix, which includes a set of

n = m + k vectors, each consisting of l blocks.

f – Function, which is defined as f : {0, 1} × key.

¢key (.)- Pseudorandom function (PRF).

Ver-version number of individual block.

Sij-seed for PRF which depend on name, block index

i, server position j and version number.

3. Secure data storage in cloud

The users store their data in the cloud server which is

no longer available locally at the user side. Thus, the

integrity and availability of the data files being stored

on the distributed cloud servers must be guaranteed.

One of the key issues is to effectively detect any

unauthorized data modification and corruption,

possibly due to server compromise and/or random

Byzantine failures. Besides, in the distributed case

when such inconsistencies are successfully detected,

to find which server the data error lies in is also of

great significance, since it can be the first step to fast

recover the storage errors. To address these problems,

our main scheme for ensuring cloud data storage is

presented in this section. The first part of the section

is devoted to a review of basic tools from coding

theories that are needed in our scheme for file

distribution across cloud servers. Then, the

homomorphic token is introduced[4]. The token

computation function we are considering belongs to a

family of universal hash function, chosen to preserve

the homomorphic properties, which can be perfectly

integrated with the verification of erasure-coded data.

Subsequently, it is also shown how to derive a

challenge response protocol for verifying the storage

correctness as well as identifying misbehaving

servers. Finally, the procedure for file retrieval and

error recovery based on erasure-correcting code is

outlined.

A. Preparation of file distribution

To tolerate multiple failures in the distributed storage

system we use erasure –correcting code. The

technique is to dispraise the data file F redundantly

across a set of n=m+k distributed server. Reed

Solomon erasure code is used for creating k

redundancy parity vectors from m data reconstructed

from any m out of m+k data[5] .It can handle the

failure without any data loss. Vandermonde matrix is

used for dispersal matrix A is derive from m x (m+k),

this is the layout of parity vector. The A matrix is

written after the transformation as (I/P), where I is

identity matrix and P is the secret parity vector. By

multiplying F by A, the user obtains the encoded file,

where F is the files to be stored in the cloud. The

multiplication reproduces the original data file

vectors of F and the remaining are k parity Vectors

generated based on F.

B. Token exactness

Verification of tokens is done in order to achieve data

storage correctness and data error localization, the

pre-computed verification tokens for each data files

that stored in cloud. Before file distribution the user

pre-computes a certain number of short verification

tokens on individual; each token covers a random

subset of data blocks. Later, when the user or the

third party auditor makes sure the storage correctness

for the data in the cloud, they challenge the cloud

servers with a set of randomly generated block

indices. After getting assurance of the user it again

asks for authentication by which the user is

confirmed to be the authenticated user. Upon

receiving assurance, each cloud server computes a

short “signature” over the specified blocks and

returns them to the user. The values of these

signatures should match the corresponding tokens

pre-computed by the user. Meanwhile, as all servers

operate over the same subset of the indices, the

requested response values for integrity check must

also be a valid codeword determined by a secret

matrix. Suppose the user wants to challenge the cloud

server‟s t times to make sure the correctness of data

storage. Then, he must pre-compute t verification

tokens for each function, a challenge key and a

master key are used. To generate the ith token for

server j, the user acts as follows:

I. Derive an arbitrary value i and a permutation key

based on master permutation key.

II. Compute the set of randomly-chosen indices:

III. Calculate the token using encoded file and the

arbitrary value derived.

Algorithm 1 Token Pre-computation

1. Procedure

2. Choose parameters l, n and function f;

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

104

3. Choose the number t of tokens;

4. Choose the number r of indices per

verification;

5. Generate master key and challenge key;

6. for vector G(j), j ←1, n do

7. for round i← 1, t do

8. Derive i = f(i) and k(i) from master key .

9. Compute v(j)

10. end for

11. end for

12. Store all the vis locally.

13. end procedure

Blinding the each parity block is important after the

token precomputing; this is done for protection of

secret matrix P. we use HMAC for parity blinding .The

encode vector is dispersed in the cloud server. This

can be done by the user.

C. Correctness verification and error

localization

The key requirement of Error localization is to

eradicating errors in storage systems. Previous

schemes do not explicitly consider the problem of

data error localization effectively.

Thus it only provides binary results for the storage

verification. Integration of all correctness

verifications, error localization in our challenge-

response protocol is done. The procedure of the ith

challenge-response for a cross-check over the n

servers is described as follows:

i) The user reveals the i as well as the ith key k

(i) to each servers

ii) The server storing vector G aggregates those

r rows

iii) Specified by index k(i) into a linear

combination R

iv) Upon receiving R is from all the servers, the

user takes away values in R.

v) Then the user verifies whether the received

values remain a valid codeword determined

by secret matrix.

Because all the servers operate over the same subset

of indices, the linear aggregation of these r specified

rows (R(1)i , . . . ,R(n)i) has to be a codeword in the

encoded file matrix. If the above equation holds, the

challenge is passed. Otherwise, it indicates that

among those specified rows, there exist file block

corruptions. Once the inconsistency among the

storage has been successfully detected, we can rely

on the pre-computed verification tokens to further

determine where the potential data error(s) lies in.

Note that each response R(j) i is computed exactly in

the same way as token v(j) i , thus the user can

simply find which server is misbehaving by verifying

the following n equations:

Algorithm 2
Correctness Verification and Error Localization

1. procedure CHALLENGE(i)

2. Recompute i = fl (i) and k(i) master key ;

3. Send {i, k(i) } to all the cloud servers;

4. Receive from servers R

5. for (j ← m + 1, n) do

6. R(j) ← R(j)−Prq=1 fkj (sIq,j)·_qi , Iq =

_k(i)prp(q)

7. end for
8. if ((R(1)i , . . . ,R(m)i) ·P==(R(m+1)i , . . .

,R(n)i)) then

9. Accept and ready for the next challenge.

10. else
11. for (j ← 1, n) do

12. if (R ! =V) then

13. return server is misbehaving.

14. end if

15. end for

16. end if

17. end procedure

D. File retrieval and error recovery

Spot-checking is randomly done for storage

correction assurance. The user can always ask

servers to send back blocks of the r rows specified in

the challenge and regenerate the correct blocks by

erasure correction. The newly recovered blocks can

then be redistributed to the misbehaving servers to

maintain the correctness of storage.

Algorithm 3. Error Recovery.

1: procedure

% Assume the block corruptions have been detected

Among % the specified r rows; % Assume s <= k

servers have been identified misbehaving

2: Download r rows of blocks from servers;

3: Treat s servers as erasures and recover the blocks.

4: Resend the recovered blocks to corresponding

servers.

5: end procedure.

E. Third Party Auditing

Our protocol can support privacy-preserving Third

party auditing (optional). Encoding procedure in file

distribution after blinding data vector, then the

storage verification task can be successfully

delegated to third party auditing in a privacy-

preserving manner[8][9].The following is the protocol.

The user blinds each file block data before file

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

105

distribution k is the secret key for data vector is

generated. Based on the blinded data vector, the User

generates k parity vector via the secret matrix P. The

user calculates the ith token for server j as previous

scheme The user sends the token secret matrix P,

permutation and challenge key Kmaster key, and kchal to

TPA for auditing delegation. The blinding values in

the servers are not taken by TPA response of the

server are verified directly. As TPA does not know

the secret blinding key there is no way for TPA to

learn the data content information during auditing

process. Thus the privacy-preserving third party

auditing is achieved with slight modification [9].

4. Providing dynamic data operation

support

So far, we assumed that F represents archived data.

However, in cloud data storage, there are many

potential scenarios where data stored in the cloud is

dynamic, like electronic documents, photos, or log

files etc. Therefore, it is crucial to consider the

dynamic case, where a user may wish to perform

various block-level operations of revise, erase and

affix to modify the data file while maintaining the

storage correctness assurance.

A. Revise Operation

In cloud data storage, sometimes the user may need

to modify some data block(s) stored in the cloud,

from its current value f to a new one; this is operation

as data revise.

B. Erase Operation

Sometimes, after being stored in the cloud, certain

data blocks may need to be erased. The erase

operation we are considering is a general one, in

which user replaces the data block with zero or some

special reserved data symbol. From this point of

view, the erase operation where the original data

blocks can be replaced with zeros or some

predetermined special blocks.

C. Append Operation

Adding blocks at the end of the data file when user

like to extend, which we refer as data append. We

anticipate that the most frequent append operation in

cloud data storage is bulk append, in which the user

needs to upload a large number of blocks (not a

single block) at one time.

D. Update Operation

The user may need to modify some data block(s)

stored in the cloud, after modification the block is

updated. The random blinding information on parity

blocks by subtracting the old and newly updated

parity blocks. As a result, the secret matrix P is still

being well protected, and the guarantee of storage

correctness remains.

5. Security issues and performance

analysis

In this section, we analyze our proposed scheme in

terms of security and efficiency. Generally, the

checking scheme is secure if (i) there exists no

polynomial-time algorithm that can cheat the verifier

with non-negligible probability; (ii) there exists a

polynomial-time extractor that can recover the

original data files by carrying out multiple

challenges-responses. We also evaluate the efficiency

of our scheme via implementation of both file

distribution preparation and verification token pre-

computation.

i) Identification Probability for

Misbehaving Servers
We have shown that, if the antagonist modifies the

data blocks among any of the data storage servers,

our sample checking scheme can successfully detect

the attack with high probability.

ii) Detection Probability against data

modification
In our scheme, servers are required to operate on

specified list of tokens. These selected tokens greatly

reduce the computational overhead on the server,

while maintaining the detection of the data corruption

with high probability. Note that if none of the

specified r rows in the ith verification process are

erased or modified, the antagonist avoids the

detection. Next, we consider the fake denial

probability that R(j)=v(j) when at least one of z

blocks are modified. Thus, the identification

probability for misbehaving server(s) is predicted.

We analyze the security strength of our schemes

against server colluding attack and explain why

blinding the parity blocks can help improve the

security strength of our proposed scheme.

Redundancy parity vectors are calculated via

multiplying the file matrix F by P, where P is the

secret parity generation matrix we later relies on for

storage correctness assurance. If we disperse all the

generated vectors directly after token pre-

computation, i.e., without blinding, malicious servers

that collaborate can reconstruct the secret P matrix

easily they can pick blocks from the same rows

among the data and parity vectors to establish a set of

m · k linear equations and solve for the m · k entries

of the parity generation matrix P. Once they have the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-8 March-2013

106

knowledge of P, those malicious servers can

consequently modify any part of the data blocks and

calculate the corresponding parity blocks, and vice

versa, making their codeword relationship always

consistent. Therefore, our storage correctness

challenge scheme would be damaged even if those

modified blocks are covered by the specified rows,

the storage correctness check equation would always

hold. To prevent colluding servers from recovering P

and making up consistently-related data and parity

blocks, we utilize the technique of adding random

perturbations to the encoded file matrix and hence

hide the secret matrix P. We make use of a keyed

pseudorandom function f with key k, both of which

has been introduced previously.

A. Performance evaluation

File Distribution Preparation is implemented for the

generation of parity vectors for our scheme. We use

Hmac for parity blinding which improves cost. This

experiment is conducted using JAVA on a system

with an Intel Core 2 processor running at 1.86 GHz,

2048 MB of RAM and 250 GB Serial ATA drive.

Thus the cost decreases when more data vectors are

involved. The performance of our scheme is

comparable and evens our scheme supports dynamic

data operation while are for static data only.

Challenge Token Pre-computation: In our scheme we

use fixed number of verification token t that are

determined before file distribution, we can overcome

this issue by choosing sufficient large t in practice.

6. Conclusion

In this paper, we studied the problem of data security

in data storage in cloud servers. To guarantee the

correctness of users‟ data in cloud data storage, we

proposed an effectual and flexible scheme with

explicit dynamic data support, including block revise,

erase, and affix. We use erasure-correcting code in

the file distribution preparation to provide

redundancy parity vectors and guarantee the data

dependability. Our scheme accomplishes the

integration of storage correctness insurance and data

corruption has been detected during the storage

correctness verification across the distributed servers.

Our scheme is highly efficient, reliable and resilient

to Byzantine failure, malicious data modification

attack, and even server colluding attacks. It also an

optional for the user to allows Third Party Auditor to

audit the cloud data storage without demanding

users‟ time, probability.

We believe that data storage security in Cloud

Computing, an area full of challenges and of

dominant significance, is still in its infancy to be

identified. We envision several possible directions for

future research on this area.

References

[1] Cloudcomputing,http://en.wikipedia.org/wiki/Clo

ud_computing, Accessed: 24/08/2012.

[2] Cloud Computing, http://www.techno-pulse.com/

Cloud Computing for Beginners, Accessed:

24/08/2011.

[3] C. Wang, Q. Wang, K. Ren, and W. Lou,

“Privacy-Preserving Public Auditing for Storage

Security in Cloud Computing,” Proc.IEEE

INFOCOM, Mar. 2010.

[4] C. Wang, Q. Wang, K. Ren, and W. Lou,

“Ensuring Data Storage Security in Cloud

Computing,” Proc. 17th Int‟l Workshop Quality

of Service (IWQoS ‟09), pp. 1-9, July 2009.

[5] Correction to the 1997 Tutorial on Reed-Solomon

CodingJames S. Plank Ying DingUniversity of

Tennessee Knoxville, TN 37996.

[6] M. Arrington, “Gmail Disaster: Reports of Mass

Email

Deletions,”http://www.techcrunch.com/2006/12/

28/gmail-disasterreportsof-Mass-email-deletions,

Dec. 2006.

[7] Privacy-Preserving Public Auditing for Secure

Cloud Storage Cong Wang, Student Member,

IEEE, Sherman S.M. Chow, Qian Wang, Student

Member, IEEE,Kui Ren, Senior Member, IEEE,

and Wenjing Lou, Senior Member, IEEE.

[8] Data storage auditing service in cloud computing:

challenges, methods and opportunities Kan Yang

· Xiaohua Jia.

[9] C. Wang, K. Ren, W. Lou, and J. Li, “Towards

Publicly Auditable Secure Cloud Data Storage

Services,” IEEE Network Magazine,vol. 24, no.

4, pp. 19-24, July/Aug. 2010.

Nithiavathy.R has received under

graduate degree in the field of Computer

Science & Engineering, from Anna

University Chennai. She is currently

pursuing Post graduate from the same

university. Her research interests include

network security and privacy and cloud

computing security.

