
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

47

Real-Time Scheduling for Parallel Task Models on Multi-core Processors

- A critical review"

Mahesh Lokhande
1
, Mohd. Atique

2

Research Scholar, Dept. of CS and Engineering,

PIET, Nagpur, India

1

Associate Professor, Dept. of CS
,
SGBAU, Amravati, India

2

Abstract

Multi-core processor technology has been enhanced

spectacularly and it is reasonably good in

performance than single core processors thereby

having the potential to enable computation-

intensive real-time applications with precise timing

constraints. Mostly traditional multiprocessor real-

time scheduling is stick to Sequential models which

ignore intra-task parallelism while Parallel models

such as OpenMP have the capability to parallelize

specific segments of tasks, thereby leading to

shorter response times when possible. In this paper

various research papers have been reviewed and are

categorized as Sequential Real-Time Task based

Research and Parallel Real-Time Task based

Research. Also various approaches such as task

splitting techniques, scheduling policies and

techniques used are considered for comparing real

time task scheduling in multi-core processors.

Keywords

Scheduling, task models, task splitting, task policies.

1. Introduction

Multi-core processors are considerably good in

performance as compare to single core processors.

Therefore, they have the potential to enable

computation-intensive real-time applications with

rigorous timing constraints that cannot be met on

traditional single-core processors. Massively multi-

core processors are rapidly gaining market share with

major chip vendors offering an ever increasing

number of cores per processor. However, most results

in traditional multiprocessor real-time scheduling are

limited to sequential programming models and ignore

intra-task parallelism. From a programming

perspective, the sequential programming model does

not scale very well for such multi-core systems.

Parallel programming models such as OpenMP

present promising solutions for more effectively

using multiple processor cores. Major chip

manufacturers have recently ramped up the

development of massively multi-core processors for a

variety of reasons including power consumption,

memory speed mismatch, and instruction-level

parallelism limits. This development has shifted the

scaling trends from processor clock frequencies to the

number of cores per processor. For example, AMD

has introduced a 12-core Opteron [1] processor

targeting the datacenter server market, while Intel has

developed a 48-core single-chip computer for cloud

computing [2]. Intel also has recently put 80 cores in

a Teraflops Research Chip [3] with a view to making

it generally available, and ClearSpeed has developed

a 96-core processor [4]. Tilera announced a 100-core

processor, TILE-Gx100 [5].

While hardware technology is moving at a rapid

pace, software and programming models have failed

to keep pace. For example, Intel has set a time frame

of 5 years to make their 80-core processor generally

available due to the inability of current operating

systems and software to exploit the benefits of multi-

core processors [3]. As multi-core processors

continue to scale, they provide an opportunity for

performing more complex and computation-intensive

tasks in real-time. However, to take full advantage of

multi-core processing, these systems must exploit

intra-task parallelism, where parallelizable real-time

tasks can utilize multiple cores at the same time. By

exploiting intra-task parallelism, multi-core

processors can achieve significant real-time

performance improvement over traditional single-

core processors for many computation intensive real-

time applications such as video surveillance, radar

tracking, and hybrid real-time structural testing [6]

where the performance limitations of traditional

single-core processors have been a major hurdle.

Parallel programming models such as OpenMP [7],

Java [8], Pthreads [9] and Cilk+ [10] are competent

candidates for taking advantage of future massive

multi-core processors. These models have the

capability to parallelize specific segments of tasks,

thereby leading to shorter response times when

possible.

2. Literature Review

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

48

Various researches are carried out their research in

recent past years for efficient real time task

scheduling. For analyzing algorithms they use

various terms like task types, task parameters, task

priorities, scheduling categories, etc. Also various

performance metrics such as Utilization bounds,

Approximation Ratio, Resource Augmentation or

Speedup factor and Empirical measures, are used to

compare the effectiveness of different scheduling

algorithms.

Task based Review

Various research papers have been reviewed and are

categorized as 1) Sequential Real-Time Task based

Research and 2) Parallel Real-Time Task based

Research.

Sequential programming models proved to be quite

useful when processor manufacturers pushed for

faster and faster processor clock speeds. As the

semiconductor vendors shift the scaling trends

towards more and more processor cores, the benefits

of sequential programming start to diminish in

comparison to the inability to take advantage of the

available parallelism. There are various Parallel

programming models, e.g. OpenMP [7], are

promising candidates that takes benefit of the future

substantial multi-core processors. These models have

the potential to parallelize particular segments of

tasks.

Sequential Real-Time Task based Research

There has been extensive work on traditional

multiprocessor real-time scheduling [11]. Most of

this work focuses on sequential programming model,

on multiprocessor or multi-core systems, where the

problem is to schedule many sequential real-time

tasks on multiple processor cores.

S. K. Dhall and C. L. Liu [12] studied the problem of

scheduling periodic-time-critical tasks on

multiprocessor computing systems. A periodic-time-

critical task consists of an infinite number of

requests, each of which has a prescribed deadline.

The scheduling problem is to specify an order in

which the requests of a set of tasks are to be executed

and the processor to be used, with the goal of meeting

all the deadlines with a minimum number of

processors. Since the problem of determining the

minimum number of processors is difficult, they

consider two heuristic algorithms. These are easy to

implement and yield a number of processors that is

reasonably close to the minimum number. They also

analyze the worst-case behavior of these heuristics.

Hard real-time systems require both functionally

correct executions and results that are produced on

time. This means that the task scheduling algorithm is

an important component of these systems. K.

Ramamritham, J. Stankovic, and P. Shiah [13],

developed efficient scheduling algorithms based on

heuristic functions to schedule a set of tasks on a

multiprocessor system. The tasks are characterized by

worst case computation times, deadlines, and

resources requirements. Starting with an empty

partial schedule, each step of the search extends the

current partial schedule with one of the tasks yet to

be scheduled. The heuristic functions used in the

algorithm actively direct the search for a feasible

schedule, i.e., they help choose the task that extends

the current partial schedule. Two scheduling

algorithms are evaluated via simulation. For

extending the current partial schedule, one of the

algorithms considers, at each step of the search, all

the tasks that are yet to be scheduled as candidates.

The second focuses its attention on a small subset of

tasks with the shortest deadlines. The second

algorithm is shown to be very effective when the

maximum allowable scheduling overhead is fixed.

This algorithm is hence appropriate for dynamic

scheduling in real-time systems.

A. Khemka and R. K. Shyamasundar [14] developed

an optimal scheduling algorithm and described that

the feasibly schedules a set of m periodic tasks on n

processors before their respective deadlines, if the

task set satisfies certain conditions. The complexity

of this scheduling algorithm in terms of the number

of scheduled tasks and the number of processors and

upper bounds on the number of preemptions in a

given time interval and for any single task is also

derived. The optimal algorithm is shown to be

particularly useful when schedules are built from the

integral flow values obtained from the corresponding

maximum flow network.

In terms of a scheduling game representation of the

problem, M. Dertouzos and A. Mok [15] discussed

the problems of hard-real-time task scheduling in a

multiprocessor environment. It is shown that optimal

scheduling without a priori knowledge is impossible

in the multiprocessor case even if there is no

restriction on preemption owing to precedence or

mutual exclusion constraints. Sufficient conditions

are derived which will permit a set of tasks to be

optimally scheduled at run time.

Joseph Y.T. Leun [16] considers the complexity of

determining whether a set of periodic, real-time tasks

can be scheduled on m ≥ 1 identical processor with

respect to fixed-priority scheduling. It is shown that

the problem is NP-hard in all but one special case.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

49

The complexity of optimal fixed-priority scheduling

algorithm is also discussed.

John Carpenter and Shelby Funk [17] presented a

new taxonomy of scheduling algorithms for

scheduling preemptive real-time tasks on

multiprocessors. They described some new classes of

scheduling algorithms and considered the relationship

of these classes to the existing well-studied classes.

They also described known scheduling algorithms

that fall under these classes and presented sufficient

feasibility conditions for these algorithms. In this, the

trade-offs involved in scheduling independent,

periodic real-time tasks on a multiprocessor is also

analyzed.

Parallel Real-Time Task based Research

There has also been extensive work on scheduling of

one or more parallel jobs on multiprocessors [18]–

[24]. However, the work in [18]–[21] does not

consider task deadlines, and that in [22]–[24]

considers soft real-time scheduling. In contrast to the

goal (i.e. to meet all task deadlines) of a hard real-

time system, in a soft real-time system the goal is to

meet a certain subset of deadlines based on some

application specific criteria.

C. D. Polychronopoulos and D. J. Kuck [18]

extensively studied the problem of scheduling

iterations of parallel loops among different

processors in a parallel system. They proposed the

Guided self scheduling technique which addresses

the problem of uneven start times for each processor.

Instead of using a fixed chunk size, they propose

decreasing chunk sizes, calculated as a decreasing

function of the current iteration number i being

executed. As execution proceeds, smaller chunks

improve the balance of the workload toward the end

of the loop.

N. S. Arora and R. D. Blumofe [19] presented a user-

level thread scheduler for shared-memory

multiprocessors, and analyzed its performance under

multiprogramming. They model multiprogramming

with two scheduling levels: their scheduler runs at

user-level and schedules threads onto a fixed

collection of processes, while below this level, the

operating system kernel schedules processes onto a

fixed collection of processors. In this they consider

the kernel to be an adversary, and their goal is to

schedule threads onto processes such that efficient

use of whatever processor resources are provided by

the kernel can be done.

Considering the problem of scheduling dynamically

arriving jobs in a non-clairvoyant setting, that is,

when the size of a job in remains unknown until the

job finishes execution, N. Bansal and K. Dhamdhere

[20] focused on minimizing the mean slowdown,

where the slowdown (also known as stretch) of a job

is defined as the ratio of the flow time to the size of

the job. They use resource augmentation in terms of

allowing a faster processor to the online algorithm to

make up for its lack of knowledge of job sizes.

Multiprocessor scheduling in a shared

multiprogramming environment can be structured as

two-level scheduling, where a kernel-level job

scheduler allots processors to jobs and a user level

thread scheduler schedules the work of a job on the

allotted processors. In this context, the number of

processors allotted to a particular job may vary

during the job's execution, and the thread scheduler

must adapt to these changes in processor resources.

For overall system efficiency, the thread scheduler

should also provide parallelism feedback to the job

scheduler to avoid allotting a job more processors

than it can use productively. W. J. Hsu, and C. E.

Leiserson [21] provides an overview of several

adaptive thread schedulers they have developed that

provide provably good history-based feedback about

the job's parallelism without knowing the future of

the job. These thread schedulers complete the job in

near-optimal time while guaranteeing low waste.

They have analyzed these thread schedulers under

stringent adversarial conditions, showing that the

thread schedulers are robust to various system

environments and allocation policies. To analyze the

thread schedulers under this adversarial model, they

have developed a new technique, called trim analysis,

which can be used to show that the thread scheduler

provides good behavior on the vast majority of time

steps, and performs poorly on only a few.

J. M. Calandrino and J. H. Anderson [22] explored

various heuristics that attempt to improve cache

performance when scheduling real-time workloads.

Such heuristics are applicable when multiple

multithreaded applications exist with large working

sets. In addition, a case study that shows how our

best-performing heuristics can improve the end-user

performance of video encoding applications is

presented. A hybrid approach for scheduling real-

time tasks on large-scale multicore platforms with

hierarchical shared caches is proposed by J. H.

Anderson, and D. P. Baumberger [23]. In this

approach, a multicore platform is partitioned into

clusters. Tasks are statically assigned to these

clusters, and scheduled within each cluster using the

preemptive global EDF scheduling algorithm. It

showed that this hybrid of partitioning and global

scheduling performs better on large-scale platforms

than either approach alone. They also determine the

appropriate cluster size to achieve the best

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

50

performance possible, given the characteristics of the

task set to be supported.

J. M. Calandrino and D. Baumberger [24] discuss an

approach for supporting soft real-time periodic tasks

in Linux on performance asymmetric multicore

platforms (AMPs). Such architectures consist of a

large number of processing units on one or several

chips, where each processing unit is capable of

executing the same instruction set at a different

performance level. They discuss deficiencies of

Linux in supporting periodic real-time tasks,

particularly when cores are asymmetric, and how

such deficiencies were overcome. They also

investigate how to provide good performance for

non-real-time tasks in the presence of a real-time

workload. It is shown that this can be done by using

deferrable servers to explicitly reserve a share of each

core for non-real-time tasks. This allows non-real-

time tasks to have priority over real-time tasks when

doing so will not cause timing requirements to be

violated, thus improving non-real-time response

times. Experiments show that even small deferrable

servers can have a dramatic impact on non-real-time

task performance.

There has been little work on hard real-time

scheduling of parallel tasks. Anderson [25] propose

the concept of a megatask as a way to reduce miss

rates in shared caches on multicore platforms, and

consider Pfair scheduling by inflating the weights

of a megatask’s component tasks. Preemptive fixed-

priority scheduling of parallel tasks is shown to be

NP-hard by Han in [26].

O.H. Kwon and K.-Y. Chwa [27] explore preemptive

EDF scheduling of parallel task systems with linear

speedup parallelism. In this they consider the

problem of scheduling independent parallel tasks

with individual deadlines so as to maximize the total

work performed by the tasks which complete their

executions before deadlines. They propose two

polynomial-time approximation algorithms for

nonmalleable parallel tasks and malleable tasks with

linear speedup.

Q. Wang and K. H. Cheng consider a heuristic for

non-preemptive scheduling. However, this work

focuses on metrics like makespan [28] or total work

that meets deadline [27], and considers simple task

models where a task is executed on up to a given

number of processors.

N. Fisher, S. Baruah, and T. P. Baker [29] presented

a polynomial-time algorithm presented for

partitioning a collection of sporadic tasks among the

processors of an identical multiprocessor platform

with static-priority scheduling on each individual

processor. Since the partitioning problem is easily

seen to be NP-hard in the strong sense, this algorithm

is not optimal. A quantitative characterization of its

worst-case performance is provided in terms of

sufficient conditions and resource augmentation

approximation bounds. The partitioning algorithm is

also evaluated over randomly generated task systems.

Most of the other work, on real time scheduling of

parallel tasks, also address simplistic task models. K.

Jansen [30] studied the scheduling of malleable tasks,

where each task is assumed to execute on a given

number of cores or processors and this number may

change during execution.

W. Y. Lee and H. Lee [31] proposed an optimal(it

always finds out the feasible schedule if one exists)

algorithm for real time scheduling of parallel tasks on

multiprocessors, where the tasks have the properties

of flexible preemption, linear speedup, bounded

parallelism and bounded deadline. The algorithm

always delivers the best schedule consuming the

fewest processors among feasible schedules.

G. Manimaran, C. S. R. Murthy, and K.

Ramamritham [32] studied non-preemptive EDF

scheduling for moldable tasks, where the actual

number of used processors is determined before

starting the system and remains unchanged.

Parallel programming models introduce a new

dimension to this problem, where jobs may be split

into parallel execution segments at specific points.

Recent results [33, 34] have considered different task

models for parallel programming. Sebastien Collette

and Liliyana Cucu [33] investigated the global

scheduling of sporadic, implicit deadline, real-time

task systems on multiprocessor platforms. They

provided a task model which integrates job

parallelism. They proved that the time-complexity of

the feasibility problem of these systems is linear

relatively to the number of (sporadic) tasks for a

fixed number of processors. They proposed a

scheduling algorithm theoretically optimal (i.e.,

preemptions and migrations neglected). Moreover,

they provided an exact feasibility utilization bound.

Lastly, they proposed a technique to limit the number

of migrations and preemptions.

S. Kato and Y. Ishikawa [34] address Gang EDF

scheduling, which applies the Earliest Deadline First

(EDF) policy to the traditional Gang scheduling

scheme, of moldable parallel task systems. They

require the users to select at submission time the

number of processors upon which a parallel task will

run. They further assume that a parallel task

generates the same number of threads as processors

selected before the execution. In contrast, the parallel

task model addressed in this paper allows tasks to

have different numbers of threads in different stages,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

51

which makes our solution applicable to a much

broader range of applications.

From a programming perspective, the sequential

programming model does not scale very well for

multi-core systems. Parallel programming models

such as OpenMP present promising solutions for

more effectively using multiple processor cores. K.

Lakshmanan, S. Kato, and R. R. Rajkumar [35] study

the problem of scheduling periodic real-time tasks on

multiprocessors under the fork-join structure used in

OpenMP. They illustrate the theoretical best-case and

worst-case periodic fork-join task sets from a

processor utilization perspective. Based on

observations of these task sets, a partitioned

preemptive fixed-priority scheduling algorithm for

periodic fork-join tasks is provided. The proposed

multiprocessor scheduling algorithm is shown to

have a resource augmentation bound of 3:42, which

implies that any task set that is feasible on m unit

speed processors can be scheduled by the proposed

algorithm on m processors that are 3:42 times faster.

For describing the performance analysis of

scheduling algorithms, conventionally utilization

bounds such as those employed by C. L. Liu and J.W.

Layland [37] are used. But there exist task sets with a

total utilization slightly greater than and arbitrarily

close to 1 that are unschedulable on a system with m

processor cores, for this conventional utilization

bounds may not be useful for analyzing the

performance of the scheduling algorithms for such

task sets. Resource augmentation bounds such as

those presented S. Funk, J. Goossens, and S. Baruah

[38] seem to be competent candidates for the

performance analysis of scheduling algorithms.

The growing importance of parallel task models for

real-time applications poses new challenges to real-

time scheduling theory that has mostly focused on

sequential task models. Notably, K. Lakshmanan [35]

in his work on parallel scheduling for real-time tasks

analyzes the resource augmentation bound using

partitioned Deadline Monotonic (DM) scheduling,

and does not consider other scheduling policies such

as global EDF.

Secondly, K. Lakshmanan [35], considers a

synchronous task model (a basic Fork-Join model),

where each parallel task consists of a series of

sequential or parallel segments. This model can be

called synchronous, since all the threads of a parallel

segment must finish before the next segment starts,

creating a synchronization point. However, that task

model is restrictive in that, for every task, all the

segments have an equal number of parallel threads,

and that number must not be greater than the total

number of processor cores. While the work presented

represents a promising step towards parallel real-time

scheduling on multi-core processors, the restrictions

on the task model make the solutions unsuitable for

many real-time applications that often employ

different numbers of threads in different segments of

computation.

Moreover, a task stretch or task decomposition

algorithm is used which decomposes each parallel

task into a set of sequential tasks, that makes a master

thread of execution requirement equal to task period,

and assign one processor core exclusively to it. The

remaining threads are scheduled using FBB-FDD

[29] algorithm. Their results do not hold if, in a task,

the number of threads in different segments vary, or

exceed the number of cores. Hence may not be

directly applicable to more general task models.

These limitations are overcome by considering a

more generalized synchronous task model by

Abusayeed Saifullah [36] in contrast to the restrictive

task model addressed in [35], where a general

synchronous parallel task model considered where

each task consists of segments, each having an

arbitrary number of parallel threads. Also a novel

task decomposition algorithm is proposed that

decomposes each parallel task into a set of sequential

tasks. Each segment may contain an arbitrary number

of parallel threads. That is, different segments of the

same parallel task can contain different numbers of

threads, and segments can contain more threads than

the number of processor cores. This model is more

portable, since the same task can be executed on

machines with small as well as large numbers of

cores.

In future, a general fork-join model with more

advanced feature such as nested fork-join structures

can also be developed. In addition, a task

decomposition algorithm that may be applicable to

more generalized task model can also be developed.

Additionally, the resource augmentation bound

considering other scheduling policies such as global

EDF can be analyzed.

3. Comparative Study of various real

time multiprocessor algorithms

Various real time algorithms are studied and are

compared on the basis of task or models used. Table

1 and Table 2 show the comparison between various

algorithms.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

52

Table 1: Comparative study of various real time

multiprocessor algorithms meant for Sequential

Task/Model

Sr.

No.

Algo.

Name

Task Splitting Tech. / Sche. Policy/

Used Technique

1 RM-US
Categories tasks as heavy light based

on certain threshold

2 SM-US
Categories tasks as heavy light and

priority order is given by SM

3 HSA
Uses heuristic function to search

tasks to be scheduled

4 MA
It focuses attention on a small subset

of tasks with the shortest deadlines

5 SAN

Described that feasibly schedules a

set of m periodic tasks on n

processors before their respective

deadlines, if the task set satisfies

certain condition

6 OFPSA
Discusses the problem of scheduling

periodic real time tasks

Table 2: Comparative study of various real time

multiprocessor algorithms meant for Parallel

Task/Model

Sr.

No.

Algo.

Name

Task Splitting Tech. / Sche. Policy/

Used Technique

1 GSS

It uses decreasing chunk sizes, where

smaller chunks improve the balance

of workload towards end of loop.

2 ULTS

Modeled multiprogramming with two

levels at user level on to a fixed

collection of processes and at kernel

level on to a fixed collection of

processors.

3 NCS

Use resource augmentation in terms

of allowing a faster processor to the

online algorithm to make up for its

lack of knowledge of job sizes

4 ASPF Based on trim analysis technique.

5
HRTS-

LSM

Uses hybrid approach for scheduling

with hierarchical shared caches.

6 PRTTS Uses concept of mega task

7 H-Pfair
It finds an approximate job partition

on two processors

8
FBB-

FFD

Provides sufficient conditions for

feasibility, a resource augmentation

approximation ratio, and simulation

results

9 EDF-ID
Schedules independent parallel tasks

with individual deadlines

10
Opt-

Algo

Finds feasible schedule using fewest

processors

11 NP-EDF
Number of used processors is defined

before starting the system

12 GSA-ST
Uses job parallelism on identical

parallel machines

13
Gang-

EDF

Derives schedulability test on the

basis of Global EDF schedulability

test i.e. BAR test

14 FPP-FJS
Developed synchronous task stretch

model using Fork-Join task sets

15 DP-FJS

Developed general parallel

synchronous task stretch model using

Fork-Join task sets

4. Conclusion

In this review paper, various research papers have

studied on the basis of various approaches such as

task splitting techniques, scheduling policies and

techniques used for comparing real time task

scheduling in multi-core processors and are

categorized as Sequential Real-Time Task based

Research and Parallel Real-Time Task based

Research. Even if extensive work done currently in

this area, a tremendous scope for research on parallel

models is still there. This review of existing

algorithms is to reveal the research challenges

existing in this field of real time task scheduling

specifically on multi-core processors.

References

[1] “AMD sets the new standard for price,

performance, and power for the datacenter,”

AMD Press Release, March 2010.

[2] “Single-chip cloud computer,” Intel Research,

Dec 2009.

[3] “Teraflops research chip,” http://techresearch

.intel. com/ProjectDetails.aspx ?Id = 151.

[4] “CoSy compiler for 96-core multi-threaded array

processor,”http://www.clearspeed.com

/newsevents/ news/ClearSpeedAce 011708.php.

[5] “Comming soon tile-gx100 the first 100 cores

processors in the world,” http:// internalcomputer.

com/coming-soon-tilegx100-the-first-100-cores-

rocessor-in-the-world. computer , Feb 2011.

[6] H.-M. Huang, T. Tidwell, C. Gill, C. Lu, X. Gao,

and S. Dyke, “Cyber-physical systems for real-

time hybrid structural testing: a case study,” in

ICCPS ’10.

[7] “OpenMP,” http://openmp.org.

[8] D. Lea, “A java fork/join framework,” in

Proceedings of the ACM 2000 Java Grande

Conference, p. 3643, June 2000.

[9] Adrien Lamothe. Pthreads programming: A

hands-on introduction, 2007.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

53

[10] “IntelR CilkTMPlus,” http:// software. intel. com/

en-us/articles/intel-cilk-plus.

[11] R. Davis and A. Burns, “A survey of hard real-

time scheduling algorithms and schedulability

analysis techniques for multiprocessor systems,”

University of York, Department of Computer

Science, Tech. Rep. YCS-2009-443, 2009.

[12] S. K. Dhall and C. L. Liu, “On a real-time

scheduling problem,” OPERATIONS

RESEARCH, vol. 26, 1978.

[13] K. Ramamritham, J. Stankovic, and P. Shiah,

“Efficient scheduling algorithms for real-time

multiprocessor systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 1, pp. 184–

194, 1990.

[14] A. Khemka and R. K. Shyamasundar, “An

optimal multiprocessor real-time scheduling

algorithm,” J. Parallel Distrib. Comput., vol. 43,

no. 1, pp. 37–45, 1997.

[15] M. Dertouzos and A. Mok, “Multiprocessor

online scheduling of hard-real-time tasks,” IEEE

Transactions on Software Engineering, vol. 15,

pp. 1497–1506, 1989.

[16] J. Y.-T. Leung and J. Whitehead, “On the

complexity of fixed-priority scheduling of

periodic, real-time tasks,” Performance

Evaluation 2, p. 237250, Dec 1982.

[17] J. Carpenter, S. Funk, P. Holman, A. Srinivasan,

J. Anderson, and S. Baruah, “A categorization of

real-time multiprocessor scheduling problems

and algorithms,” in Handbook on Scheduling

Algorithms, Methods, and Models. Chapman

Hall/CRC, Boca, 2004.

[18] C. D. Polychronopoulos and D. J. Kuck, “Guided

selfscheduling: A practical scheduling scheme for

parallel supercomputers,” IEEE Transactions on

Computers, vol. C-36, no. 12, pp. 1425–1439,

1987.

[19] N. S. Arora, R. D. Blumofe, and C. G. Plaxton,

“Thread scheduling for multiprogrammed

multiprocessors,” in SPAA ’98.

[20] N. Bansal, K. Dhamdhere, J. Konemann, and A.

Sinha, “Nonclairvoyant scheduling for

minimizing mean slowdown,” Algorithmica, vol.

40, no. 4, pp. 305–318, 2004.

[21] K. Agrawal, Y. He, W. J. Hsu, and C. E.

Leiserson, “Adaptive task scheduling with

parallelism feedback,” in PPoPP ’06.

[22] J. M. Calandrino and J. H. Anderson, “Cache-

aware realtime scheduling on multicore

platforms: Heuristics and a case study,” in

ECRTS ’08.

[23] J. M. Calandrino, J. H. Anderson, and D. P.

Baumberger, “A hybrid real-time scheduling

approach for large-scale multicore platforms,” in

ECRTS ’07.

[24] J. M. Calandrino, D. Baumberger, T. Li, S. Hahn,

and J. H. Anderson, “Soft real-time scheduling on

performance asymmetric multicore platforms,” in

RTAS ’07.

[25] J. H. Anderson and J. M. Calandrino, “Parallel

real-time task scheduling on multicore

platforms,” in RTSS ’06.

[26] C.-C. Han and K.-J. Lin, “Scheduling

parallelizable jobs on multiprocessors,” in RTSS

’89.

[27] O.H. Kwon and K.-Y. Chwa, “Scheduling

parallel tasks with individual deadlines,” Theor.

Comput. Sci., vol. 215, no. 1-2, pp. 209–223,

1999.

[28] Q. Wang and K. H. Cheng, “A heuristic of

scheduling parallel tasks and its analysis,” SIAM

J. Comput., vol. 21, no. 2, pp. 281–294, 1992.

[29] N. Fisher, S. Baruah, and T. P. Baker, “The

partitioned scheduling of sporadic tasks

according to static-priorities,” in ECRTS. IEEE

Computer Society, 2006, pp. 118–127.

[30] K. Jansen, “Scheduling malleable parallel tasks:

An asymptotic fully polynomial time

approximation scheme,” Algorithmica, vol. 39,

no. 1, pp. 59–81, 2004.

[31] W. Y. Lee and H. Lee, “Optimal scheduling for

real-time parallel tasks,” IEICE Trans. Inf. Syst.,

vol. E89-D, no. 6, pp. 1962–1966, 2006.

[32] G. Manimaran, C. S. R. Murthy, and K.

Ramamritham, “A new approach for scheduling

of parallelizable tasks in realtime multiprocessor

systems,” Real-Time Syst., vol. 15, no. 1, pp. 39–

60, 1998.

[33] S. Collette, L. Cucu, and J. Goossens,

“Integrating job parallelism in real-time

scheduling theory,” Inf. Process. Lett., vol. 106,

no. 5, pp. 180–187, 2008.

[34] S. Kato and Y. Ishikawa, “Gang EDF scheduling

of parallel task systems,” in RTSS ’09.

[35] K. Lakshmanan, S. Kato and R. R. Rajkumar,

“Scheduling parallel real-time tasks on multi-core

processors,” in RTSS ’10.

[36] Abusayeed Saifullah, Kunal Agrawal, Chenyang

Lu, and Christopher Gill, “Multi-core Real-Time

Scheduling for Generalized Parallel Task

Models”, in RTSS’11.

[37] C. L. Liu and J.W. Layland, “Scheduling

algorithms for multiprogramming in a hard-real-

time environment,” J. ACM, vol. 20, no. 1, pp.

46–61, 1973.

[38] S. Funk, J. Goossens, and S. Baruah, “On-line

scheduling on uniform multiprocessors,” in

Proceedings of the IEEE Real-Time Systems

Symposium (December 2001), IEEE Computer.

Society Press, 2001, pp. 183–192.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-2 Number-4 Issue-6 December-2012

54

Mahesh Lokhande was born in Akola,

India. He completed B.E. in Electronics

and Communication from SGB

Amravati University Amravati (MS),

and M.Tech. in Information

Technology from RGTU, Bhopal.

He is presently working as an Assistant

Professor in the Department of

Electronics and Communication Engineering at JIT,

Borawan of RGTU, Bhopal. He has versatile teaching,

administrative and industrial experience over 13 years. He

has published some research papers in

national/international journals and conferences. His

research interests include Real Time Operating Systems

and Image Processing. He is a life member of ISTE New

Delhi.

Dr. Mohammmad Atique has

completed Ph.D. in Computer Science

and Engineering from SGB. Amravati

University (MS) in the area of Soft

Computing. He is presently working as

an Associate Professor at SGB

Amravati University, Amravati. He is a

member of International Neural

network Society (U.S.A.), Fellow IETE New Delhi, Life

Member of ISTE, New Delhi, Sr. Member CSI, Mumbai

and Fellow IE, Kolkata. He has vast teaching and

administrative experience over 23 years at both college and

university levels. He has published many research papers in

national/international journals and conferences. His main

research area includes Soft computing, Real time operating

Systems, Artificial Neural Network and Machine

Intelligence.

