
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

64

Measuring Coverage Percentage for C Programs using Code Slicer

and CREST Tool

Sangharatna Godboley
1
, Avijit Das

2
, Kuleshwar Sahu

3
, Durga Prasad Mohapatra

4
,

 Banshidhar Majhi
5

Abstract

Augmented test suite generation is a technique to

minimise test effort and duration. Modified

condition and decision coverage (MC/DC) is a white

box software testing criteria targeting to prove all

the conditions involved in a predicate which can

influence the predicate value in an efficient way.

The coverage analysis is a structural testing

method, which helps to remove gaps in a test suite

and determines when to stop testing. In this paper,

we propose an augmented method to generate a test

suite that helps in measuring coverage percentage

of a program. We propose a technique which

consists of mainly three modules. The crest module

is a program slicer, who accepts a program written

in C language and uses some slicing criteria results

an executable sliced program. The second module is

the CREST tool (CONCOLIC tester) which accepts

the executable C sliced program as an input. The

CREST tool drives to generate the test suite. The

third module is Coverage Analyser (CA) to compute

the coverage percentage. Our technique helps to

achieve the coverage percentage with time taken to

execute the program.

Keywords

Code Slicer, Crest Tool, Concolic Testing, Coverage

Analyser, Program Slicing, And Modified Condition /

Decision Coverage.

1. Introduction

Testing strategies are mainly divided into two

categories, BLACK BOX TESTING: The structure

of software is not considered only the functional

1Sangharatna Godboley, Department of Computer

Engineering, ARMIET Shahpur, Thane, India.
2Avijit Das, Defence Research & Development Organisation,

Hydrabad India.
3Kuleshwar sahu, Department Computer Science, National

Institute of Technology Kurukshetra, India.
4Durga Prasad Mohapatra, Department Computer Science

and Engineering, National Institute of Technology Rourkela, India.
5Banshidhar Majhi, Department Computer Science and

Engineering, National Institute of Technology Rourkela.

requirements[1] of the module are taking under

consideration. The software system act as a black

box, taking input test data and giving output results.

WHITEBOX TESTING: As everything is transparent

in glass, like that visibility in all aspect for software

shows the property of glass box testing. Structure,

design and code of software [7] should be studied for

this type of testing. Also it is called as development

or structural testing. Modified condition / decision

coverage follows four criteria: The condition

coverage and decision coverage criteria by resulting

that each condition [8] in a decision independently

affects the output of the decision, each decision has

to exercise for all results at least once in whole

performance, each condition or clause in the decision

has to exercise all possible results at least once in

whole performance and each clause in the predicate

has to independently affect the predicate's results.

The main objective of our work is to develop an

automated approach to generate [4] test suite that can

evaluate MC/DC coverage percentage. To reach our

objective, we propose the approach to calculate

coverage percentage after using CONCOLIC tester

CREST tool. The CONCOLIC testing is combination

of concrete and symbolic [5] testing was originally

designed to achieve branch coverage. In our work,

we present the code slicer as a crest module in which

we insert program code under test written in C

language and obtained the sliced program as output.

Sliced program is a subset of original program. For

slicing the program we need to provide slice criteria.

Code slicer consists of four steps, crest step is

converting code into an abstract syntax tree (AST),

second step is converting the AST into a RCFG, third

step is implementing a slicing algorithm using the

RCFG, and fourth step is converting the slicing

algorithm output back into the original program’s

syntax. The second module of approach is generating

test suite using CONCOLIC tester. The CONCOLIC

tester generates concrete input values for the sliced

code. The CREST tool is open source CONCOLIC

tester to generate test suite for C language program.

Third module is coverage analyser, it calculates the

coverage percentage. We need to provide MC/DC

test data for each and every clause with original

program to coverage analyser and at last we get the

coverage percentage. In our observations when we

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

65

are inserting sliced program to CONCOLIC tester

some MC/DC test data are generate, using these

values and our program we calculates the coverage

percentage. The second section of our paper will

discuss about some basic concepts. The third section

shows the related works. The fourth section discusses

about our proposed approach to measure coverage

percentage. The fifth section shows the

implementation for our concept. The sixth section

concludes our approach. At last the reference for our

paper.

2. Basic Concepts

In this section, we discuss some basic definitions

regarding program slicing, MC/DC coverage, and

CONCOLIC testing.

1. MC/DC coverage: Following five steps are used

to determine the MC/DC coverage.

a. Develop a proper representation of the pro-

gram.

b. Find the test inputs, which can be obtained

from the requirement based tests of the soft-

ware product.

c. Remove the masked test cases. The masked

[6] test case is one whose output for a partic-

ular gate are hidden from all others outputs.

d. Calculate MC/DC.

e. At last the results of the tests are used to

confirm correct operation of the program.

2.Program Slicing: Program slicing [9] is a

decomposition method, which searches the portion of

a program that have semantic importance to a chosen

point of interest, called as the slice criterion,

extracting these parts to form the program slice,

which is a subset of original program. Program

slicing reduces code to statements relevant for partial

computation, deleting irrelevant statements. Sliced

program is a subset of original program. A program

slice consists of all the statements affecting the

variable(s) at a position in the program, which are

both specified by the slice criteria. Program slicing is

divided in two main categories: semantic and

syntactic. The semantic types include the static

slicing, dynamic slicing, and conditioned slicing

while the syntactic types include syntax preserving

and amorphous slicing. These two elements are

important aspects of slicing. The semantic element

describes that, what portion of the original program is

to be preserved. The syntactic element consists of

two possible types of program slicing. The crest type

is, the program's original syntax can be preserved,

removing sections of the program that have no effect

in the semantics of interest, and the second type is the

syntax transformation take place, which preserve the

semantic detail of the program.

3. CONCOLIC Testing: The CONCOLIC testing

[3] combines the concrete constraints and symbolic

constraints to automatically generate test data for full

path coverage. CONCOLIC testing produces test

suites by executing the program with random values.

The CONCOLIC testing producing test cases by

executing the program code with random value. The

CONCOLIC tester selects a value from the path

constraints and negates the values to create a new

path value. Then the CONCOLIC tester finds

concrete constraints to satisfy the new path values.

These values are inputs for all next execution. This

process performed iteratively until exceeds the

threshold value or sufficient code coverage obtained.

3. Related Works

Bokil et al. [2] proposed a tool AutoGen that reduces

the cost and effort for test data preparation by

automatically generating test data for C code. Auto-

Gen takes the C code and a criterion such as

statement coverage, decision coverage, or Modified

Condition / Decision Coverage (MC/DC) as input

and generates non-redundant test data that satisfies

the specified criterion.

Samer Hamood [12] has designed C Slicer. Hamood

proposed a parallel slicing algorithm, which was

adopted to compute slices, and inadvertently lead to

the innovation of a new sequential algorithm based

upon the old parallel one.

Awedikian et al. [15] have given a concept for

automatic MC/DC test generation. They used ET

methods to generate test inputs to achieve MC/DC

coverage. Their objective was MC/DC coverage.

However, a drawback of local maxima as the HC

algorithm performs data search in limited scope. This

shows the solution is not globally optimal.

Chen et al. [14] have written a paper to compute test

Coverage, the approach is a gradation model, in

which different coverage has different ranks, and the

test coverage [9] of the upper layer is computed

according to the coverage of all the layers from the

lowest to current layer and the rank difference. To

compare the importance of different variables, the

paper proposes new concept coverage about

variables, based on program slicing, and adds powers

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

66

according to their importance. They have focus on

the important variables to obtain higher test coverage.

In most cases, the coverage obtained by our method

is bigger than that obtained by a traditional concept,

because the coverage about a variable takes only the

codes related into account, and the gradation model

takes more factors into consideration when analyzing

test coverage.

4. Measuring of coverage

Percentage

This section explains an explanation of the proposed

approach. Evaluation of coverage percentage metric

using code slicer and CREST tool [16,17]. Basically

our approach based on three modules: CODE

SLICER, CONCOLIC TESTER [16,17], and

COVERAGE ANALYSER[16,17]. Figure 1 shows

the concept of our approach by combination of all

three modules:

1. CODE SLICER: Code slicer accept an error less

C written program code to be slice. The C program

passed to slicing mechanism. The slicer mechanism

is responsible for transforming the original C

program into the sliced program. There is a slicing

criteria need to provide to slice a C program. We

have to specify a slice criterion by variable(s) and

statement through inputting those values. The

program will then be redisplayed after the slicing

process complete. The program code will be in sliced

version of the original program code. From Figure 2,

the C program to be sliced is the input of the

approach that is entered. The code is then read into

the parser. The code is parsed and transformed into

its AST. The AST is passed to the slicer mechanism,

starting the slicing approach by supplying the code

slicer with all the necessary information on the code

it will slice. At last, the code slicer results the sliced

C program in the form of a C syntax.

Figure 1: Schematic Representation of CS, CT,

AND CA

The main element of CODE SLICER is SLICER

(XML Parser (DOM)). The SLICER functionality is

depends on three categories: CODE CONVERTER,

CODE EXTRACTOR, and SLICER TOOL. The

Code Converter is crest category. The Code

Converter category is responsible for converting the

original C program code into a CFG graph

representation.

This process is happened by running the parser. The

parser captures the AST XML output in an XML file.

The code converter creates if the C program code is

errorless otherwise exception is thrown. The

converted XML _le is then passed to the XML parser

DOM is so that the AST XML can be traversed.

When AST is traversing the program statements are

rebuilt. Control Flow Node class model CFG nodes,

to which Code Converter passes a Syntax class. They

are being constructed while traversing the AST. The

Code Converter calls a method from Code Extractor

to calculate the token points which are stored in the

syntax class. When all Node objects have assembled,

the code converter is able to compute a reverse

control owe graph (rcfg) technique as a Control Flow

Graph data structure object. The second category of

slicer is code extractor. It is architecturally straighter

than the code converter. The code extractor is

dependent on just one other module, and basically

writes and reads to less. The code extractor points the

exact location in the program files of every statement

token. Then the statement is passed, and begins and

end indices to Token Point data structure object.

Token Point object array is returned. The line

statement is on attained from the AST, and together

with the statement program code. The statement line

provide a starting point to locates they began and end

indices of every tokens. The code extractor's another

function performing the creation of file that saves the

slice syntax. The placed values stored in Token Point

objects to allow code extractor to copy the same

syntax found in the input C program into the new

slice file. The Slice Tool is third category of

SLICER. It is the combination of two elements

CODE CONVERTER and CODE EXTRACTOR.

The main slicer's functionality of this SLICER TOOL

is simple command line user interface. The C

program code is to be sliced and slice criteria, and

displaying on the command prompt screen the slicer's

results as output. Here, the second category

functionality CODE EXTRACTOR comes into play.

Passing all these points to the write code and method

that creates the file containing the slice, which Code

Slicer Tool then displays for the users viewing.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

67

2. CONCOLIC TESTER: The sliced version of

original C program code generated from

CODESLICER is passed to CONCOLIC tester

CRESTTOOL. The CREST tool achieves branch

coverage through any strategy for test suite

generation. The CONCOLIC Tester is a combination

of CONCrete and symbOLIC testing. The additional

generated statements lead to generation of extra test

suite for the sliced version of the program. There are

several strategies like: DFS, CFG, and RANDOM

etc. Due to random strategy, different execution of

the CREST tool may not generate identical test data.

The Test Case generation depends on the path of each

and every execution of program. All test cases stored

in .text files forms as a test suite. The input.txt files

contains the selected input concrete values, this

depends on strategy of selection values. The

constraints solver selects the values. The CREST tool

having constraints solver named as yices. The

generation of numbers of input.txt file depends on

both the iteration number provided and till all

branches covered. The CREST tool record the

covered node numbers in one .txt file named as

coverage.txt file. From Figure 1 the second module

represents the CONCOLIC TESTER. The CREST

tool is the CONCOLIC tester which accepts sliced

version of original C program code and generates

MC/DC test suite as shown in Figure 1.

3. COVERAGE ANALYSER: From Figure 1, the

third module represents Coverage Analyser which

calculates the MC/DC coverage percentage achieved

by a test suite. It is to evaluate the extent to which a

C program code feature has been processed by test

data. Also Coverage analyser ends inadequacy of test

data and results an insight on those aspects of an

implementation that have not been tested in whole

execution. In our concept Coverage Analyzer is used

to calculate coverage percentage metric performed by

the test suite generated by the CONCOLIC tester

CRESTTOOL and sliced program transformed by

CODESLICER. The original C program code for

testing and the test suite generated from CREST tool

are passed to the Coverage Analyser. The coverage

analyzer observe the extent to which independent

effect of the component condition on the evaluating

each predicate by the test data. The MC/DC

percentage coverage achieved by the test cases for

program as input by MC/DC coverage is calculated

by the formula:

MC/DCcoverage=

((Total_independent_affected_conditions)/

(Total_condition_in_predicate))*100 (11)

5. Experimental Studies

We have proposed our approach using three module:

CODE SLICER, CONCOLIC TESTER, and

COVERAGE ANALYSER. The objective of CODE

SLICER is to transform the original C program into

sliced version. The CREST tool is a CONCOLIC

TESTER to execute CONCOLIC testing for errorless

C program code. We fetched the sliced program to

CREST tool, then it gives test suite and coverage as

an output. Then the generated test suite with original

C program we calculate coverage percentage by

COVERAGE ANALYZER. Table 1 and Table 2

shows the experimental results for original and sliced

version of the C program.

Table 1: Experimental results I

Program Locs Branches Node Branch

Edges

Covered

Branches

PROGR

AM1.C

16 10 17 12 7

PROGR

AM1SLI

CED.C

12 2 7 0 2

Table 2: Experimental results II

Program Iterations Test

Data

Files

Time

(Sec)

Coverage

Percentage

PROGRAM1.C 8 8 3.00 75%

PROGRAM1S

LICED.C

3 3 3.00 100%

From Table 1 and 2, we can see that the reduction in

complexness of the sliced version program over the

original program. The LOCs, EDGES, NODES and

BRANCHES of the sliced version program are

decreased. When we observe the time, we find that

the time taken to execute both the programs is equal,

but we achieve enhanced coverage percentage for the

sliced version. From Table 2, we observed that, the

percentage coverage for the original program without

using code slicer is 75 %. But, the percent of

coverage for the sliced program is 100 %, as we have

used a code slicer. So, we may conclude that the

percentage of coverage has been increased by 25%

due to the use of code slicer. This is a significant

increase in the percentage of coverage.

6. Conclusion and Future Work

In this work, we have proposed a novel approach to

measure coverage percentage of a program written in

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

68

C language. Here we have presented an approach to

automate [10] the test data generation [13] procedure

to achieve coverage percentage with the time taken

for execution. We have used the existing

CONCLOICTESTER i.e CREST tool with a CODE

SLICER to generate test data for MC/DC. Also, we

have proposed an algorithm for coverage analysis

which measures the coverage percentage. From the

experimental results, we observed that, the sliced

version program achieves 25%more coverage than

the original version of program, due to the use of

code slicer.

The future version of this paper will consist of code

slicer with code transformer, to get the better result.

We will have time analysis of execution.

Acknowledgment

We express our gratitude to Prof. Rajib Mall of IIT

Kharagpur for providing the necessary inputs and

guidance at different stages of our research work.

We are very indebted to Mr. A. V. Gupta, Founder

Trustee, and Dr. L. K. Bothra, Chairman, ARMIET

Shahpur for their support.

Figure 1: Coverage Analysis

References

[1] Qu, Xiao and Robinson, Brian. A case study of

CONCOLIC testing tools and their limitations.

2011 International Symposium on Empirical

Software Engineering and Measurement (ESEM),

pages 117-126, Washington, D.C.,USA, 2011.

[2] Bokil, Prasad and Darke, Priyanka and Shrotri,

Ulka and Venkatesh, R. Automatic test data

generation for c programs. Third IEEE

International Conference on Secure Software

Integration and Reliability Improvement, SSIRI

2009. pages 359-368, 2009.

[3] Sen, Koushik and Marinov, Darko and Agha,

Gul. CUTE: a CONCOLIC unit testing engine for

C. In Proc. ESEC/FSE, ACM, 30(5), pages 263-

272, Lisbon, Portugal, 2005.

[4] Burnim, Jacob and Sen, Koushik. Heuristics for

scalable dynamic test generation. Proceedings of

the 23rd IEEE/ACM international conference on

automated software engineering, IEEE Computer

Society, pages 443-446, Washington, D.C., USA,

2008.

[5] S. Krishnamoorthy, S M. Hsiao, and L.

Lingappan. Strategies for scalable symbolic

execution driven test generation for programs. In

Science China Information Sciences, 54, pages

1797-1812, 2011.

[6] Suman, P. and Muske, T. and Bokil, P. and

Shrotri, U. and Venkatesh, R.. Masking boundary

value coverage: Effectiveness and efficiency

Testing-Practice and Research

Techniques,springer, pages 8-22, 2010.

[7] Kuhn, D Richard. Fault classes and error

detection capability of specification based

testing. ACM Transactions on Software

Engineering and Methodology (TOSEM),ACM,

8(4), pages 411-424, 1999.

[8] Akers, S.B. On a theory of boolean functions.

Journal Society Industrial Applied Mathematics,

7(4), pages 487-498, December 1959.

[9] Ammann,P. , Offutt, J. and Huang, H.. Coverage

criteria for logical expression. In Proc. ISSRE,

pages 99-107, Washington, D.C., USA, 2003.

[10] [Menno D. Hollander. Automatic Unit Test

Generation. Master thesis, Software Engineering

Research Group, Delft University of Technology,

Delft, The Netherlands, 2010.

[11] CREST. http://code.google.com/p/crest.

[12] [Hamood, S. C Slicer. MSc Individual Project,

Msc Advanced Software Engineering,

Department of Computer Science, King's College

London, University of London 2004 - 2005.

[13] Harman, M. ,and Danicic, S.. Using Program

Slicing to Simplify Testing. Journal of Software

Testing, Veri_cation and Reliability, 5(3), pages

143-162, 1995.

[14] Chen, Zhenqiang and Xu, Baowen and Yang,

Hongji and Chen, Huowang. Test coverage

analysis based on program slicing. IEEE

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

69

International Conference on Information Reuse

and Integration, 2003. , pages 559-565, 2003.

[15] Z. Awedikian, K. Ayari, and G. Antoniol.

MC/DC automatic test input data generation. In

Proc. GECCO, pages 1657-1664, New York,

USA, 2009.

[16] SangharatnaGodboley, G.S.Prashanth, Durga

Prasad Mohapatra and BansidharMajhi."Increase

in Modified Condition/Decision Coverage Using

Program Code Transformer ", In proceedings

of 2013 3rd IEEE International Advance

Computing Conference (IACC), Gaziyabad(U.P),

Pages: 1401-1408, Feb 2013.
[17] SangharatnaGodboley, SaiPrashanth, Durga

Prasad Mohapatra and BansidharMajhi.

"Enhanced Modified Condition/Decision

Coverage Using Exclusive-NOR Code

Transformer", In proceedings of 2013 IEEE

International Multi Conference on Automation,

Computing, Control, Communication and

Compressed Sensing (IMAC4S), Kottayam,

India, 22nd - 23rd March 2013.

The author name is Prof. Sangharatna

Godboley and was born on 1st July

1990 at Nagpur Maharastra. The author

completed his B.E degree from

Government Engineering College

Bilaspur, affilited to CSVTU Bhilai

University. He did his M.Tech degree

from National Institute of Technology

Rourkela under the guidance of Prof. D. P Mohapatra and

Prof. B. Majhi. He is a IEEE student member and IEEE

Communication Society member since1st Jan 2013. He has

published two IEEE international conferences and one

Springer conference. He communicated with FIVE more

research paper.

AVIJIT DAS was born in Patna, India

on 1st January 1983. He received his

B.Tech degree from NIT Silchar and his

M.Tech degree in Computer Science

and Engineering from IIT Kharagpur.

Currently, he is holding the position of

Scientist-D in Defence Research &

Development Organisation, India. He is

working in the area of independent verification and

validation of avionics software. During his M.Tech course

he worked under the guidance of Professor Rajib Mall for

his M.Tech thesis and published a paper in automatic mc/dc

test data generation in an international journal.

Kuleshwar Sahu born on 21st March

1989 at durg, India. He did his B.E

from Government Engineering College

Bilaspur, affilited to CSVTU Bhilai

university. He did his M.Tech degree

from National Institute of Technology

Kurukshetra. He is Software Developer

at TCS Ahmadabad India. He has

published one Springer conference and one International

conference paper. His areas of interests are Data Mining

and Advanced DBMS.

Prof. Durga Prasad Mohapatra
received his Ph. D. from Indian Institute

of Technology Kharagpur and M. E.

from Regional Engineering College

(now NIT), Rourkela. He joined the

faculty of the Department of Computer

Science and Engineering at the National

Institute of Technology, Rourkela in

1996, where he is now Associate Professor. His research

interests include software engineering, real-time systems,

discrete mathematics and distributed computing and

published more than forty papers in these fields. He has

received many awards including Young Scientist Award

for the year 2006 by Orissa Bigyan Academy, Prof. K.

Arumugam award for innovative research for the year 2009

and Maharasthra State National Award for outstanding

research for the year 2010 by ISTE, New Delhi. He has

also received three research projects from DST and UGC.

Currently, he is a member of IEEE. Dr. Mohapatra has co-

authored the book Elements of Discrete Mathematics: A

computer Oriented Approach published by Tata Mc-

GrawHill.Computer Science and Engineering Dept.,

National Institute of Technology, Rourkela, India.

Prof. Bansidhar Majhi received his

Ph. D and M. E. from Regional

Engineering College (now NIT),

Rourkela. He joined the faculty of the

Department of Computer Science and

Engineering at the National Institute of

Technology, Rourkela in 1991, where

he is now Professor. His research

interests include Soft Computing, Image processing,

Biometrics, Security Protocols. He is a member of

professional bodies like FIETE, LMCSI, and AMIE

(INDIA). Computer Science and Engineering Dept.,

National Institute of Technology, Rourkela, India.

Author’s Photo

Author’s Photo

Author’s Photo

