
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

88

Association Rule Mining Analyzation Using Column Oriented Database

D. P. Rana
1
, N. J. Mistry

2
, M. M. Raghuwanshi

3

Abstract

The logical view of data is a two dimensional table

and the physical storage is a single dimensional.

Two approaches exist to map two dimensional data

on to a single dimensional storage: Row oriented

and Column oriented. Common database

applications are developed using traditional row-

oriented database systems. Data Mining (DM) is a

promising research area, deals with huge data with

large numbers of attributes and records. DM

algorithms are more analytical in nature with the

goal of reading through the data to gain new insight

and use it for planning make Column oriented

database systems more preferable. The Column

oriented database systems show better performance

than traditional database on analytical workloads

such as those found in data warehouses, decision

support, and business intelligence applications. The

Column oriented databases like MonetDB is utilized

for performance analysis of SQL queries. This

paper is focused on the utilization of Column

oriented databases like MonetDB with Oracle 11g -

the famous Row oriented database for execution

time analysis for famous DM algorithm: APRIORI.

Experiment results show the faster execution time

of MonetDB compare to Oracle for different

supports and justifies the suitability of the Column

oriented database for such data mining algorithm.

Keywords

Apriori algorithm, Association Rule Mining, Column

store database, Row store database.

1. Introduction

From last decades, all areas of our society strongly

depend on the information technology. The amount

of data stored and processed worldwide in

information systems has grows enormously.

D. P. Rana, Computer Engineering Department, Sardar

Vallabhbhai National Institute of Technology, Surat, India.

N. J. Mistry, Civil Engineering Department, Sardar

Vallabhbhai National Institute of Technology, Surat, India.
M. M. Raghuwanshi, Rajiv Gandhi College of Engineering

and Research, Nagpur, India.

In data bases, data stores in tabular form where rows

correspond to relationships or entity (Records or

instance of a table) and columns are the attribute or

features. If the expected process tends to access data

on the granularity of an entity e.g., Display complete

information of a student, Add new student, Delete

complete information of a Student etc., then the row-

by-row storage is preferable since all of the needed

information will be stored together i.e. RDBMS

(Relational Database Management System). On the

other hand, if the expected process tends to deal with

only a few attributes from many records of a table,

e.g., a query that finds the most common favorite

book, then column-by-column storage is preferable

since other attributes are irrelevant for a particular

query and need not have to be accessed. This type of

application needs Columned Database [1] - [3].

Data mining is the creation of new knowledge in

natural or artificial form, by using business

knowledge to discover and interpret patterns in data

[4]. Major data mining task like Outlier analysis,

Classification, Association Rule mining etc., need to

analyze attribute(s) individually so column oriented

database (Column store) is well suited for many of

these algorithms.

In 1993, the author R. Agrawal et al. proposed

association rule mining algorithm to discover the

relation between the items/attribute values [5]. This

paper is targeting only association rule mining

technique.

This paper is describing the study and performance

analysis of the Row store vs. Column store DBMS

and performance impact of column store DBMS with

association rule mining. The next Section 2 discusses

the study of column database storage with its

advantages and disadvantages. Section 3 provides

brief introduction and literature survey of Association

rule mining approaches and their limitations with

respect to column database. The Section 4 analyzes

the execution time of the association rule mining

algorithm with row oriented and column oriented

database, which is followed by conclusion in Section

5.

2. Column vs. Row Data Store

System

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

89

Row data store system access whole record with

every query despite of involvement of attributes in

the query, as every tuple is stored in a bundle in the

secondary storage. While the column data store

system will access individual columns quickly as

every column is stored in a bundle in the secondary

storage. In column store system, the two dimensional

data table will be vertically partitioned and stored in

the multiple tables containing two columns. The new

table name contains: Table identifier and Column

identifier. First column of the table will contain the

tuple identifier and the second column will contain

the column value. This makes write process and

complete tuple access more expensive in columned

database. So it is found that column store is read-

optimized and row store is write-optimized. Column

store is more efficient for analytics because it is not

pulling in all of the unnecessary columns which are

not the part of the query [3]. The advantages of

column store over row store are as follows:

1. Data compression: Column data is of

uniform type. Therefore it is much easier to

compress than row data and NULL values

need never be stored. Row stores cannot

omit columns from any row and still achieve

direct random access to a table, because

random access requires that the data for each

row be of fixed width. In column stores, this

is trivially true because of type uniformity

within a single column's storage, allowing

omission of NULL values and therefore

efficient storage of wide, sparsely populated

tables. In practice, row store system can and

does implement tables with variable-width

rows, but this requires either some form of

indirect access or giving up random access

in favor of some type of fast ordered access.

2. Improved Bandwidth Utilization: For tables

with many columns and queries that use

only few of them, a column store can

confine its reads to the columns required,

whereas a row store must read the entire

table. The Row stores are extremely "write

friendly" as adding a row of data to a table

requires a simple file appending I/O and

column stores perform better for complex

read queries.

3. Improved Code Pipelining: The storage

efficiency properties of column stores can

greatly reduce the number of actual disk

reads required to satisfy a query. The

reduced irrelevant column access saves CPU

cycle performance as we use the

performance only for the required attributes.

4. Improved cache locality: The cache in the

column oriented contains only the required

data instead of the unnecessary data which is

the case for the row oriented database.

Though, the column store system has a number of

advantages, it also has disadvantages which are as

follows:

1. Reduced Disk Performance: Multiple

columns access needs parallel read operation

and thus it will increase the seek time.

2. Poor insertion efficiency: Single record

insertion needs to access every column

tables and thus the higher insertion time is

due to higher seek time and sparse storage of

a record.

A. Column Oriented Databases

Numbers of column store system are available

nowadays. HBase is an open source column oriented

database system modeled on Google's BigTable [6].

Infobright is column oriented MySQL engine and

almost all MySQL api's/interfaces/tools can be used

though it's column oriented [7]. Infobright has its

own proprietary data storage and query optimization

layers. InfiniDB is an open source (GPLv2) by

Calpont which supports most of the MySQL API and

stores data in a column-oriented fashion, and is

optimized for large-scale analytic processing [8].

MonetDB is a relational database management

system that stores data in columns [9], [10]. C-Store

is a read-optimized relational DBMS storage of data

by column rather than by row with overlapping

collection of column-oriented projections, rather than

the current fare of tables and indexes [11], [12].

B. MonetDB System

In this section, we provide the necessary information

of MonetDB database system as we have used it for

the analysis. In MonetDB, every n-ary relational table

is represented as a collection of Binary Association

Tables called BATs [9] without any hole. For a

relation R of k attributes, there exists k BATs, each

BAT storing the respective attribute as (key, attr)

pairs. The 'key' is system generated and identifies all

attributes of the relational tuple. In MonetDB, SQL

queries are translated by the compiler and the

optimizer into a query execution plan that consists of

a sequence of relational algebra operators. One or

more MonetDB Assembly Language (MAL)

instructions will be generated for each relational

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

90

operator. Each MAL instruction performs a single

action using one or more columns in a bulk

processing mode. Intermediate results are also

maintained as temporary BATs in a column format.

For example, SELECT R.z FROM R WHERE R.x <

10 AND R.y BETWEEN 11 AND 20;

This query is translated into the following (partial)

MAL plan:

R.x1 := algebra.select(R.x, 0, 10);

R.y1 := algebra.select(R.y, 11, 20);

R.x2 := algebra.KEYintersect(R.x1, R.y1);

R.z1 := algebra.project(R.z, R.x2);

The MonetDB query processing scheme consists of

three software layers. The pipeline is used to

identified by the SQL global variable optimizer,

which can be modified using a SQL assignment

1. The top layer is formed by the query language

parser that outputs a logical plan expressed in MAL.

2. The code produced by MonetDB/SQL is passed

and massaged by a series of optimization steps,

denoted as an optimizer pipeline.

3. The MAL plans are transformed into more

efficient plans enriched with resource management

directives.

C. SQL Query Analysis

The analysis process carried out by comparing

different query execution time on the column DBMS

(MonetDB) with row DBMS (Oracle11g enterprise)

for the real and synthetic dataset. The real dataset-

GSS [11] is having 121 attributes and 10047 records

and the synthetic dataset is created with 257

attributes and 1362 records. Since the datasets are

not much large compared to real datasets, a

milliseconds count can affect the result for this type

of dataset.

The execution time analysis for a set of SQL queries

applied on these two dataset on MonetDB and

Oracle11g enterprise version is performed, which are

as follows:

The execution time of MonetDB is much faster than

the Oracle for the queries which include single

column, two or more columns. The better

performance of MonetDB is also achieved when

execute the query with single or few column with

condition on columns. MonetDB performance is

excellent compared to Oracle on queries having

group by, order by clause. For simple select all

columns or entire row, query without aggregate

function like sum, max, count, avg etc. the

performance of MonetDB is quite poor compare to

Oracle. But, if this query is with aggregate function

than, the MonetDB performance is excellent.

MonetDB performance is more time consuming

compared to Oracle when using complex queries like

use of subqueries, join and view where only few

columns is being accessed. From the result of query

analysis we concluded that Oracle or row database is

suitable for applications where we need to access

entire row at any time, while MonetDB or columned

database is suitable for applications where we need to

access only set of columns instead of entire row

access.

3. Association Rule Mining

The performance of column database is very much

satisfactory where column access is more than the

row access. This inference emphasized to work on

some algorithms where column access is more. From

literature survey it is observed that data mining

algorithms have more column access (items or

features) rather than entire row (all items or features).

The association rule mining is utilized in application

domains such as market basket analysis, finance (to

identify patterns that help be used to decide the result

of a future loan application), environmental and

satellite research (to identify potential undetected

natural resources or to identify disaster situations like

oil slicks), health care (to predict outbreaks of

infectious diseases), web traffic analysis (to

recommend the next web page), network (to detect

botnet) etc. [14], [15].

A large number of association rule mining methods

have been reported in the literature, which have

different mining efficiencies. Their resulting sets of

rules are however all the same based on the definition

of association rules. That is, given a transaction data

set T, a minimum support and a minimum

confidence, the set of association rules existing in T

is uniquely determined. Any algorithm should find

the same set of rules although their computational

efficiencies, the number of times it scan the database,

the structure it used to represent the transaction pages

and memory requirements may be different.

In Apriori algorithm the classical association rule

mining approach is used to discover the frequent item

sets, which is the sets of items that have minimum

support and then association rules are generated

considering confidence threshold [16]. It follows the

Apriori Property, “if an itemset is frequent, then all of

its subsets must also be frequent“ and it proceeds by

identifying the frequent individual items in the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

91

database and extending them to larger and larger item

sets as long as those item sets appear sufficiently

often in the database. The frequent item sets

determined will be used to generate association

rules which highlight general trends in the database.

Combinatorial explosion of the number of possible

frequent itemsets and making of multiple passes over

the data affects the performance of Apriori algorithm.

Many variations of the Apriori algorithm have been

proposed in literatures to improve the efficiency of

the original algorithm. In 2000, the author J. Han et

al. [17] proposed the FP-growth algorithm which

uses only two data scans and also avoids the

generation of a large number of candidate itemsets by

storing complete FP-tree into the memory and in

2003, the author A. Pietracaprina et al. [18] proposed

the modification to this using trie structure. A hash

technique is very efficient. In 1995, the author Park et

al. [19] proposed DHP algorithm using hash-based

itemset counting to reduce the size of the candidate 2-

itemsets and more. In 1997, the author Soo et al. [20]

proposed the improvement over DHP in which during

the process of candidate itemsets generation, it

progressively also reduces the transaction database

size by effective pruning techniques. It is useful

particularly for the large two-itemsets, greatly

improves the performance of the entire process.

In 2005, the author L. Zhi-Chao et al. [21] proposed

transaction reduction technique in AprioriTid

algorithm which relies on a concept that a transaction

that does not contain any frequent k-itemset is useless

in subsequent scans. It is generating candidate

transaction database D’ of the candidate frequent

itemsets and mining is performed on the database D’.

Thus, it reduces the time of I/O operation because D’

is smaller than D.

In 1995, the author A. Savasere et al. [22] proposed

partitioning technique to mine the frequent itemsets

from the data within two database scan by dividing

the database into small non overlapping partitions

such that each partition can be handled in the main

memory and finding the local large itemsets by using

Apriori algorithm. And thus reducing disk I/O for

each partition after loading the partition into the main

memory.

Major works are discussed here which deal with

boolean association rules, but still other research

works are there. In 2012, the author E. Duneja et al.

[23] has discussed the research review of association

rule mining approaches focused on mining of

multilevel association rules, multidimensional

association rules and quantitative association rules.

In association rule mining, major database access is

done during frequent itemset generation. Because of

this the overall performance of mining association

rules is determined by this process. Thus, in all above

discussed approaches, the majority of related research

has focused upon the efficient discovery of frequent

itemsets as its level of complexity is greater than to

generate association rule. These approaches are

minimizing the execution time using different

techniques like usage of special structure, transaction

reduction, less number of data scans, etc. from

transactional and/or relational databases.

From these approaches we can conclude that these

techniques have not considered the physical storage

of transaction data which is utilized in process of

frequent item generation. From the study of column

database and association rule mining approaches, we

motivated to utilize the column database for storage

instead of relational row database where it tries to

access the complete transaction information rather

than just to have required partly transaction

information.

Up to the knowledge of the author the exploitation

for the performance analysis of association rule

mining using column database is untouched. Thus,

this paper is analyzing the Boolean association rule

mining with the column database.

4. Execution Time Analysis

The implementation is performed on Intel core i5

processors, 4 GB RAM with 64 bit windows

operating system using JAVA language. We need to

check the execution time of Apriori algorithm with

more number of instances, so prepared Aprdata-

synthetic data having more number of instances

compare to market basket dataset. So, prepared the

Aprdata which is binary dataset having values either

0 (not purchased item) or 1 (purchased item) with

10000 number of instances and 101 number of

attributes are considered for the performance

analysis.

The following Fig. 1 shows the execution time

analysis of Apriori algorithm on both MonetDB and

Oracle. From the analysis of result we can see that

MonetDB performance is very much better than

Oracle for Apriori algorithm. On analysis of Apriori

algorithm we can notice that algorithm does only

frequent column access. More column pairs are

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

92

formed after each phase and only those column pairs

are accessed rather than entire row. We can also see

that on decreasing minsup value time for database

increases and time difference become clearer.

Decreasing minsup will allow more column pair to be

form in each phase as a result the database has to

perform more and hence more execution time.

Fig. 1: Execution Time analysis of Apriori

algorithm for ‘Aprdata’ dataset

Here, the noticeable execution time result is observed

in Fig. 1, for Oracle (Row database). For Aprdata

MonetDB and Oracle is showing less time difference

in terms of 100
th

 due to more number of instances.

Thus, we can conclude that the execution time will be

much less in column database compare to row

database for large number of instances. Our result

concludes that performance analysis of association

rule mining using Apriori algorithm is much better

with column oriented database compare to row

oriented database. And hence we can say that access

of data from column database for data mining

algorithm results in faster than row database.

5. Conclusion

From the study and analysis in the previous sections,

we conclude that Column oriented database

performance is better than row oriented database

when column related queries are more than row by

execution of SQL queries on MonetDB and Oracle.

Expectation of faster execution time with the column

oriented database for data mining algorithms

compared to row oriented database is analyzed for

the Apriori algorithm on MonetDB and Oracle. And

from the experimental results we achieved faster

execution performance for MonetDB than Oracle.

The faster execution for the algorithm on synthetic

dataset shows the suitability of the column oriented

database for such data mining algorithm. The

research can be extended for Apriori algorithm with

real values and to be tested on other real datasets.

Reference

[1] K. Venkat and K. Rakesh, “Column oriented

databases vs row oriented databases,” Special

Interest Activity, ITK – 478, 2007.

[2] D. Abadi, “Column-stores for wide and sparse

data,” 3rd Biennial Conf. on Innovative Data

Systems Research, California, USA, pp. 7 – 10,

January 2007.

[3] D. J. Abadi, S. R. Madden and N. Hachem,

“Column stores vs. row stores: How different are

they really?,” SIGMOD 2008, Vancouver, BC,

Canada, pp. 9–12, 2008.

[4] J. Han and M. Kamber, Data mining: Concepts

and techniques, 2nd ed. Morgan Kaufmann,

2006, ch. 6.

[5] R. Agrawal, T. Imielinski and A. Swami,

“Mining association rules between sets of Items

in large databases” in Proc. of ACM SIGMOD

Intl. Conf. on Management of Data, pp. 207 –

216, 1993.

[6] [Online]. Available:

http://www.hbase.apache.org.

[7] [Online]. Available: http://www.infobright.org.

[8] Calpont, What is infinidb?

http://infinidb.org/resources/what-is-infinidb,

2010.

[9] [Online]. Available: http://www.monetdb.org.

[10] S. Idreos, F. Groffen, N. Nes, S. Manegold, S.

Mullender and M. Kersten: “MonetDB: Two

decades of research in column-oriented database

architectures,” Data Engineering IEEE Computer

Society, 2012.

[11] S. Kanade and A. Gopal, “Choosing right

database system: Row or column-store,” Intl.

Conf. on Information Communication and

Embedded Systems (ICICES), ISBN: 978-1-

4673-5786-9, pp. 16 – 20, 2013.

[12] A. H. Jennifer, L. Beckmann, J. F. Naughton and

D. J. DeWitt, “A comparison of c-Store and row-

store in a common framework,” in Proc. of the

32nd VLDB Conference, Seoul, Korea, 2006.

[13] [Online]. Available:

http://www.mathcs.org/statistics/statcrunch/gss20

08/.

[14] D. P. Rana, N. J. Mistry and M. M.

Raghuwanshi, ”Association rule mining for

environmental data: A study,” Intl. Congress of

Environmental Research (ICER-11), India,

December-2011.

[15] S. S. Garasia, D. P. Rana and R. G. Mehta,

“HTTP botnet detection using frequent patternset

mining,” Intl. Journal of Engineering Science and

Advanced Technology (IJESAT), ISSN: 2250–

3676, vol. 2, no. 3, pp. 619 – 624, 2012.

Ti
m

e
 in

 s

% Min Support

MonetDB - Column
Database
Oracle - Row Database

http://hbase.apache.org/
http://www.monetdb.org/
http://www.mathcs.org/statistics/statcrunch/gss2008/
http://www.mathcs.org/statistics/statcrunch/gss2008/

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-11 September-2013

93

[16] R. Agrawal and R. Srikant, “Fast algorithms for

mining association rules in large databases,”

Proc. of the Twentieth Intl. Conf. on Very Large

Databases, Santiago, Chile, pp. 487–499, 1994.

[17] J. Han and J. Pei, “Mining frequent patterns by

pattern-growth: methodology and implications,”

ACM SIGKDD Explorations, vol. 2, pp. 14–20,

2000.

[18] A. Pietracaprina and D. Zandolin, “Mining

frequent itemsets using Patricia Tries,” in Proc.

of IEEE ICDM Workshop Frequent Itemset

Mining Implementations (FIMI), vol. 80, 2003.

[19] J. S. Park, M. S. Chen, and P. S. Yu, “An

effective hash-based algorithm for mining

association rules,” in Proc. ACM-SIGMOD, Int.

Conf. Management of Data (SIGMOD), San

Jose, CA, pp. 175–186, May 1995.

[20] J. Soo, M. S. Chen, and P. S. Yu, “Using a hash-

based method with transaction trimming and

database scan reduction for mining association

rules,” IEEE Transactions on Knowledge and

Data Engineering, vol. 5, pp. 813–825, 1997.

[21] L. Zhi-Chao, H. Pi-Lian and M. Lei, “A high

efficient AprioriTid algorithm for mining

association rule,” in Proc. of Intl. Conf. of

Machine Learning and Cybernetics, pp. 1812 –

1815, 2005.

[22] A. Savasere, E. Omiecinski and S. B. Navathe,

“An efficient algorithm for mining association

rules in large databases,” in Proc. of the ACM

SIGMOD Intl. Conf. on Management of Data,

pp. 432–443, 1995.

[23] E. Duneja and A. K. Sachan, “A Survey on

Frequent Itemset Mining with Association

Rules”, Intl. Jrnl. of Computer Applications,

ISSN:0975 – 8887, Vol. 46, Iss.23, pp. 18-24,

2012.

Dipti P. Rana is Assistant Professor at Computer

Engineering Department, S. V. National Institute of

Technology, Surat, Gujarat-395007, India. She obtained her

M. Tech.(R) degrees from S. V. National Institute of

Technology with specializations in Computer and is

currently pursuing her PhD degree. Her research interest is

in the field of security in web applications, computer

architecture, database management system, data mining and

web data mining. She is a life member of ISTE and CSI.

Naresh J. Mistry is Professor at Civil Engineering

Department, S. V. National Institute of Technology, Surat,

Gujarat-395007, India. His research interests are water and

wastewater treatment, solid waste management,

environmental impact assessment and environmental audit.

He is a member of CES.

Mukesh M. Raghuwanshi is working as a principal at

Rajiv Gandhi College of Engineering and Research,

Nagpur, India. He completed his PhD in Computer Science,

2007, at Visvesvaraya National Institute of Technology

(VNIT), Nagpur, India and M.Tech. in Computer Science

& DP, 1991, at Indian Institute of Technology (IIT),

Kharagpur, India. His research interests are evolutionary

computing, genetic algorithm, data structures, algorithm,

compilers, programming Languages, data mining and data

warehouse, web crawling, text summarizing, image

processing. He is having reputed 16 journal publications

and 26 conferences publications. He is a member of IEEE,

ISTE and CSI.

