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Abstract 
 

 In this paper, the authors established the 

generalized Ulam-Hyers stability of n  

Homomorphisms, n  Derivations of a n  

dimensional additive functional equation  
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 where 2n  on *C ternary algebras.   
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1. Introduction and Preliminaries 
 

The study of stability problems for functional 

equations is related to a question of Ulam [1] 

concerning the stability of group homomorphisms 

and affirmatively answered for Banach spaces by 

Hyers [2]. It was further generalized and excellent 

results obtained by number of authors [3,4,5,6,7,8]. 

During the past two decades, a number of papers and 

research monographs have been published on various 

generalizations and applications of the generalized 

Hyers-Ulam stability to a number of functional 

equations and mappings, for example, Cauchy-Jensen 

mappings, k-additive mappings, invariant means, 

multiplicative mappings, bounded nth 

differences,convex functions, generalized 

orthogonality mappings, Euler-Lagrange functional 

equations, dfferential equations, and Navier-Stokes 

equations (see[9 -15]).  

 

Also, the stability problem of ternary 

homomorphisms and ternary derivations was 

established  by Park [16] and J.M.Rassias, Kim [17] 
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  Definition 1.1 [18] A C *
ternary algebra is a 

complex Banach space A , equipped with a ternary 

product ],,[),,( zyxzyx   of 
3A  into A , which 

is C linear in the outer variables, conjugate 

C linear in the middle variable, and associative in 

the sense that  

],,],,,[[=]],,,[,[=]],,[,,[ vwzyxvyzwxvwzyx
and satisfies   

3||||=||],,[||      ||||||||||||||],,[|| xxxxandzyxzyx 

        
 Every left Hilbert C *

module is a 

C *
ternary algebra via the ternary product 

zyxzyx ,=],,[ . If a C *
ternary algebra 

]),,[,( A  has an identity, i.e., an element Ae  

such that   ],,[=],,[= xeeeexx
  

for all Ax , 

then it is routine to verify that A , endowed with 

],,[= yexyx   and ],,[=* exex , is a unital 

C *
algebra. Conversely, if ),( A  is a unital 

C *
algebra, then zyxzyx  *=],,[  makes A  

into a C *
ternary algebra.  

 

Definition 1.2 [19, 20] Let A  and B  be 

C *
ternary algebras. A C linear mapping 

BAH :  is called a C *
ternary algebra 

homomorphism if  

)](),(),([=]),,([ zHyHxHzyxH  

for all Azyx ,, . If, in addition, the mapping H  

is bijective, then the mapping BAH :  is called 

a C *
ternary algebra isomorphism.  

 

Definition 1.3 [19, 20] A C linear mapping 

AAH :  is called a C *
ternary derivation if  

([ , , ]) = [ ( ), , ] [ , ( ), ]

[ , , ( )].

x y z x y z x y z

x y z

  






 

Definition 1.4 C *
ternary algebra 

n homomorphism Let A  and B  be C *
ternary 
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algebras. A C linear mapping BAH :  is 

called a C *
ternary algebra homomorphism if  

)](),(),([=]),,([ 11 nn xHHxHxxH   

for all Axx n ,,1  .  

Definition 1.5 C *
ternary algebra n derivation 

A C linear mapping AAH :  is called a 

C *
ternary derivation if  

1 1

1

([ , , ]) = [ ( ), , ]

[ , , ( )].

n n

n

x x x x

x x

 






 

 In this paper, the authors proved the generalized 

Ulam-Hyers stability of a n  dimensional additive 

functional equation 
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

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


          

(1.1) 

 where 2n  on Banach algebras.  

 In Section 2 and Section 3, the generalized Ulam - 

Hyers stability of n homomorphisms and 

n derivations of a n  dimensional additive 

functional equation (1.1),  is respectively provided. 

 Through out this paper, let us consider X  and Y  to 

be a *C ternary algebra with norm || ||X  and a 

*C ternary algebra with norm || ||Y  respectively.   

 

2.  n  Homomorphisms Stability 

Results 
 

In this section, the generalized Ulam - Hyers  

stability of n homomorphisms of the additive 

functional equation  (1.1) is provided.  

 

Theorem 2.1  Let 1,1}{j . Assume 

)[0,: nX  and )[0,: nX  be 

functions such that  

 12 , ,2
= 0,lim

2

nj nj

n

nj
n

x x



         (2.1) 

  

          

 12 , ,2
= 0lim

2

nj nj

n

nj
n

x x

           

(2.2) 

 for all Xxx n ,,1  . Let :g X Y  be a 

function satisfying the inequality  

     1

=1 =1 =1

1 , ,
n i n

j i n

i j i
Y

g x n i g x x x
 

    
 

  

 (2.3) 

 1 1 1([ , , ]) [ ( ), , ( )] , ,n n nY
g x x g x g x x x 

 (2.4) 

 for all Xxx n ,,1  . Then there exists a unique 

*C ternary algebra n - homomorphism mapping 

:H X Y  such that  

        

1
=

2

1 (2 ,2 ,0 ,0)
( ) ( )

2 2

kj kj

kjY
j

k

x x
g x H x





    (2.5) 

 for all Xx .  

Proof. Assume 1=j . Replacing 

),,,( 321 nxxxx   by ,0),0,( xx  in (2.3), we get  

        

 
(2 ) 1

( )   , ,0, ,0
2 2( 1)Y

g x
g x x x

n
 


 (2.6) 

 for all Xx . Now replacing x  by x2  and 

dividing by 2 in (2.6), we get  

 
2

2 2

(2 ) (2 ) 1
2 ,2 ,0, ,0

2 2 2 ( 1)
Y

g x g x
x x

n
 



 (2.7) 

 for all Xx . From (2.6) and (2.7), we obtain  

 
2

2

2
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(2 )
( )
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( )

2 2 2

Y

Y Y

g x
g x

g x g x g x
g x


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
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
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
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,0),0,,2(2
,0),0,,(

1)2(

1 


xx
xx

n


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(2.8)

  for all Xx .  

 

             In general for any positive integer k  , we get 

(2 )
( )

2

k

k

Y

g x
g x                                                                                              
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1

=0

1 (2 ,2 ,0, ,0)

2( 1) 2

i ik

i
i

x x

n





             (2.9) 

i

ii

i

xx

n 2

,0),0,,2(2

1)2(

1

0=








 

 for all Xx . In order to prove the convergence of 

the sequence ,
2

)(2









k

k xg

 

replace x  by x2  and 

dividing by 
2  in (2.9), for any 0>,k  , we 

deduce  

 

( )

(2 ) (2 )

2 2

1 (2 2 )
= (2 )
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k

Y

k

k

Y

g x g x
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i ik
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        0 as k   

 for all .Xx  Hence the sequence 









k

k xg

2

)(2
 is 

Cauchy sequence. Since Y  is complete, there exists 

a mapping YXH :  such that  

(2 )
( ) =  , .lim

2

k

k
n

g x
H x x X



   

Letting k   in (2.9) we see that (2.5) holds for 

all Xx . To prove that H  satisfies (1.1), 

replacing ),,( 1 nxx   by ),2,(2 1 n

kk xx   and 

dividing by 
k2  in (2.3), we obtain  

 

   
=1 =1 =1

1
2 1 2

2

n i n
k k

j ik
i j i

Y

g x n i g x
 

   
 

  
        

                  

1

1
(2 , ,2 )

2

k k

nk
x x  

 for all Xxx n ,,1  .  

              Letting k   in the above inequality and 

using the definition of ( )H x , we see that  

   
=1 =1 =1

= 1 .
n i n

j i

i j i

H x n i H x
 
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 

    

Hence H  satisfies (1.1) for all Xxx n ,,1  . It 

follows from (2.4) that  

1 1([ , , ]) [ ( ), , ( )]n n Y
H x x H x H x

 

1 1

1
([2 , ,2 ]) [ (2 ), , (2 )]

2

k k k k

n nk Y
g x x g x g x 

),2,(2
2

1
1 n

kk

k
xx 

 

 kas             0  

 for all Xxx n ,,1  . Hence  

)](,),([=]),,([ 11 nn xHxHxxH   

for all Xxx n ,,1  . To prove that H  is unique, 

let )(xG  be another mapping satisfying (2.1) and 

(2.5), then  

( ) ( )
Y

H x G x              
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


   

0 as k   

 for all Xx . Hence H  is unique. Thus the 

mapping :H X Y  is a unique *C ternary 

algebra n - homomorphism satisfying (2.5).  

 For 1= j , we can prove a similar stability result. 

This completes the proof of the theorem.  

  The following Corollary is an immediate 

consequence of Theorem 2.1 concerning the stability 

of (1.1).  

Corollary 2.2 Let 1,  and s  be nonnegative real 

numbers. Let a function :g X Y  satisfies the 

inequality  
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 for all Xxx n ,,1  . Then there exists a unique 

*C ternary algebra n - homomorphism function 

:H X Y  such that  

3
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|| ||
,

( 1) | 2 2 |( ) ( )
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 for all .  Xx   

 

3. n  Derivations Stability Results 

 

In this section, the generalized Ulam - Hyers stability 

of n derivations of the additive functional equation 

(1.1)  is given.  

Theorem 3.1  Let 1,1}{j . Assume 

)[0,: nX  and )[0,: nX  be 

functions such that  

                

 12 , ,2
= 0,lim

2

nj nj

n

nj
n

x x


          

(3.1) 
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= 0lim
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nj nj
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n

x x
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(3.2) 

 for all Xxx n ,,1  . Let :g X Y  be a 

function satisfying the inequality  
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(3.4) 

 for all Xxx n ,,1  . Then there exists a unique 

*C ternary algebra n -derivation mapping 

YX :  such that  
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Proof. It follows from (3.4) that  
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 for all Xxx n ,,1  . Hence  

)](,,[],),([=]),,([ 111 nnn xxxxxx   

 

for all Xxx n ,,1  . The rest of the proof is 

similar tracing to that of Theorem 2.1.  
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 The following Corollary is an immediate 

consequence of Theorem 3.1 concerning the stability 

of (1.1).  

Corollary 3.2 Let 1,  and s  be nonnegative real 

numbers. Let a function :g X Y  satisfies the 

inequality  

   
=1 =1 =1

1
n i n

j i

i j i
Y

g x n i g x
 

   
 

  

=1

3

=1=1

,

|| || , <1      >1

1 1
|| || || || , <       > ;

3 3

n
s

i X

i

n n
s s

i X i X

ii

x s or s

x x s or s












 

  

  
  




 

 

                                                                          

                                                                             (3.6) 

               

1 1

1

([ , , ]) [ ( ), , ]

[ , , ( )]

n n

n Y

g x x g x x

x g x

 



1

1

=1

3

1

=1=1

,

|| || ,

|| || || || ,

n
s

i X

i

n n
s s

i X i X

ii

x

x x












 

  

  
  




       

(3.7) 

 for all Xxx n ,,1  . Then there exists a unique 

*C ternary algebra n - derivation function 
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4. Conclusion 
 

The additive function ( )g x x  is the solution of the 

additive functional equation (1.1),  the functional 

equation can be rewritten as follows 

  
=1 =1 =1

= 1 .
n i n
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i j i

x n i x
 
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That  is  

   

 

1 1 2 1 2

1 21 .

n

n

x x x x x x

n x n x x

      
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If we replace, the  “ ” by  “ ” in the above 

identity, then the truth values satisfies the  

equivalence relation.  
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