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Abstract
In this paper, the authors established the
generalized  Ulam-Hyers  stability of Nn-—

Homomorphisms, N— Derivations of a N-—
dimensional additive functional equation

Sa[ 34 |= Sin-i+9a(0)
i=L \j=L i=1
where N> 2 on C” —ternary algebras.
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1. Introduction and Preliminaries

The study of stability problems for functional
equations is related to a question of Ulam [1]
concerning the stability of group homomorphisms
and affirmatively answered for Banach spaces by
Hyers [2]. It was further generalized and excellent
results obtained by number of authors [3,4,5,6,7,8].
During the past two decades, a number of papers and
research monographs have been published on various
generalizations and applications of the generalized
Hyers-Ulam stability to a number of functional
equations and mappings, for example, Cauchy-Jensen
mappings, k-additive mappings, invariant means,
multiplicative mappings, bounded nth
differences,convex functions, generalized
orthogonality mappings, Euler-Lagrange functional
equations, dfferential equations, and Navier-Stokes
equations (see[9 -15]).

Also, the stability  problem of ternary
homomorphisms and ternary derivations was
established by Park [16] and J.M.Rassias, Kim [17]
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Definition 1.1 [18] A C*—ternary algebra is a
complex Banach space A, equipped with a ternary

product (X,Y,Z) =[X,Y,z] of A® into A, which
is C—linear in the outer variables, conjugate

C —linear in the middle variable, and associative in
the sense that

[x, y.[z, w1l =[x [w, 2, yI.vI= [ ¥, 2], w, v,

and satisfies
1Dy 20 =1yl 2l and [T Dx,x, X3 l=1 x P
left Hilbert C —module is a
C*—ternary algebra via the ternary product
[x,y,21=(x,y)z.
(A[-;]) has an identity, i.e., an element € € A
such that X =[x,e,e]=[e,e,X] forall Xxe A,
then it is routine to verify that A, endowed with
Xoy=[x,e,y] and X =[e,x,€], is a unital

Every

If a C*—ternary algebra

C"—algebra. Conversely, if (Ao) is a unital
C"—algebra, then [X,Y,z] = Xoy oz makes A

intoaC — ternary algebra.

Definition 1.2 [19, 20] Let A and B be
C*—ternary algebras. A C—linear mapping

H:A—>B is called a C —ternary algebra
homomorphism if

H([x y, z) =[H(x),H(y), H(2)]

for all X,Y,Z € A. If, in addition, the mapping H
is bijective, then the mapping H : A— B is called
aC' — ternary algebra isomorphism.

Definition 1.3 [19, 20] A C —linear mapping
H : A— A iscalled aC " — ternary derivation if
o([x,y,z]) =[6(x), y, 2] +[x, 6(y), Z]

+[xy,6(2)].

Definition 1.4 c' - ternary algebra

N—homomorphism Let A and B be C”— ternary
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algebras. A C —linear mapping H:A—>B is
calleda C” — ternary algebra homomorphism if
H([X,.... %) =[H (), H(.) H(X,)]

forall X,..., X, € A.

Definition 1.5 C*—ternary algebra N —derivation
A C—linear mapping H: A— A is called a
c' - ternary derivation if

O([X,- - X, 1) =[6(X)s- e X, ] ...
+[X,..,0(%)]

In this paper, the authors proved the generalized
Ulam-Hyers stability of a N — dimensional additive
functional equation

n

55 3 = So-i2it)

i=1

(1.1)

where N> 2 on Banach algebras.

In Section 2 and Section 3, the generalized Ulam -
Hyers stability of N —homomorphisms and
N —derivations of a N— dimensional additive
functional equation (1.1), is respectively provided.

Through out this paper, let us consider X and Y to
be a C" —ternary algebra with norm IIIly and a

c’ —ternary algebra with norm || -, respectively.

2. N— Homomorphisms Stability
Results
In this section, the generalized Ulam - Hyers

stability of N —homomorphisms of the additive
functional equation (1.1) is provided.

je{-1,1}. Assume
B:X" 5[0,00) be

Theorem 2.1

a: X" —[0,0)
functions such that
0:(2"‘5(1,...,2”j Xn)

Let

and

M]O o =0, (2.1)
B(2"x,..., 2" x_
lim ( % ) =0 (22)

nN—oo 2nJ
for all X,....,X,€X. Let g: X =Y be a
function satisfying the inequality
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ig (ijJ—i(n—i +1)g (%) <a(X,....%,)
Y (2.3)

g% %, D =[90%), - g, < B (X0 X,)
(2.4)

for all X;,...,X, € X . Then there exists a unique

C*—ternary algebra N - homomorphism mapping
H: X —Y such that

a(29x,29x,0...,0)

la-H, <2 3 LEXE

2

(2.5)
k=221
2

forall Xxe X .
Proof. Assume j=1
(X, Xgy X5+, X,) by (X, %,0...,0) in (2.3), we get

_9(2%)|
— |YS2(n—l) a(x,x,0,...,0)

for all Xe X . Now replacing X by 2X and
dividing by 2 in (2.6), we get

l9@x)  g(2*x)|
2 22|

Replacing

1

g(x (2.6)

1
< 2X,2x,0,...,0
22(n_1)a( X, X )

Y
2.7)

forall X € X . From (2.6) and (2.7), we obtain

_9@x)
o224

_9@9) a0 9@
PO
< {a(x .0 O)+05(2X,2X,0,..,,0)}
ST ,%,0,..., ;

(2.8)

forall Xe X .

In general for any positive integer K , we get

_9(2'x)
o5

Y
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1 Ha(2x2%,0,...,0)
< 2.9
2(n-1) Z.; 2! 29)
1 a(2'x,2'x,0,...,0)
< -
~2(n-1) ; 2'

for all X € X . In order to prove the convergence of

2% x
the sequence {%}, replace X by 2'X and

dividing by 2 in (2.9), for any k,/>0 |, we
deduce

9@'x) 9%
| ! 2(+D) ”

Y

) g(2“-2'x)
2k

1
=—|g(2"x
5 Hg(

Y

k-1 i+ i+
1 Za(z x,2.ﬁx,0,...,0)
2(n —1) i=0 2"

i a(2"x,2"x,0,...,0)
2(n 1) 4 2"

—>0ask >
2% x
for all X € X. Hence the sequence {%} is

Cauchy sequence. Since Y is complete, there exists
amapping H : X =Y such that

H(X) = lim g(zk X) ,VxeX.

N—o0
Letting K — 00 in (2.9) we see that (2.5) holds for
all Xe X . To prove that H satisfies (1.1),

replacing  (X;,...,X,) by (2“x,...,2“x ) and
dividing by 2% in (2.3), we obtain

[sz j Z n—i+1)g(2x)

i=1

Y
2k 05(2k 0 2%)

forall X,...,X, € X.
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Letting K — o0 in the above inequality and
using the definition of H(X), we see that

;H (Zx J Z n—i+1)H(x).

i=1

Hence H satisfies (1.1) for all X0 X, € X. It
follows from (2.4) that
IHDX - %D =[H ), H(x )],

<192 2%, D -[9@ %)+ 9@ X,

1
S?,B(kal,...,zkxn)

—0 as k—>o0
forall X,...,X, € X . Hence
H(X, . %D =[H), -+ H(X,)]

forall X,...,X, € X . To prove that H is unique,

let G(X) be another mapping satisfying (2.1) and
(2.5), then
IH() -G,

<5 {lH@0-0@x], +fo@n-c@)

<t 1 l N 0{(2'+k 2”kx,0,...,0)

2k 2 2(i+k)

1& a(27%x,2%x,0,...,0)
+§; o(i+k)

-x a(2™x,2*x,0,...,0)
—Z o(i+k)

i=0
—0ask—>w

for all Xe X . Hence H
mapping H:X =Y is a unique C —ternary
algebra N - homomorphism satisfying (2.5).

For ] =—1, we can prove a similar stability result.
This completes the proof of the theorem.

The following Corollary is an immediate
consequence of Theorem 2.1 concerning the stability
of (1.2).

Corollary 2.2 Let 4,4, and S be nonnegative real
numbers. Let a function g: X —Y satisfies the

inequality

is unique. Thus the
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[gxij‘i(“-”l)g(xi)

i=1

Y

A,

DY
L
{H||x||x+z||x|| }s<— or 5>

(2.10)

IA

s<1 or s>1

”g([xl’--'vXn])_[g(xl)""! g(xn)]”Y

a
DI

ﬂl{f[n AN ||3;},

for all X,...,

(2.11)

IN

X, € X . Then there exists a unique
C*—ternary algebra N - homomorphism function
H: X —Y such that
A

n-1’

Allx I
(n-1)[2-2°|

3

Al X

(n-1)|2-2%|

la)-HE), <

(2.12)

forall xe X.
3. n— Derivations Stability Results

In this section, the generalized Ulam - Hyers stability
of N—derivations of the additive functional equation

(1.1) is given.
Theorem 3.1 Let je{-1,1}. Assume
a: X" —>[0,0) and pS:X"—>[0,00) be

functions such that
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2%, 2" X

!L’I!a( Xlzn,- Soo e
2%, 2%

lﬁﬂﬂ( Xlznj X)=0 (3:2)

for all X,...,X,€X. Let g: X —=>Y be a
function satisfying the inequality

gg(ngJ—g(n—Hl)g(xi)

Y
<a(X,....X,) (3.3)
9% X1 X D =[G (X), X0 X, ]
—[x,90%),-... %]
—[% %0 9 (3]
<B(Xy Xgre Xy) (34)
for all X;,...,X, € X. Then there exists a unique
o —ternary algebra N -derivation  mapping
0 : X =Y such that
lg(x) - 3(x)|, s% i a2 2ij 0....0)

forall Xe X .

Proof. It follows from (3.4) that

|60 X D=8, X, T =+ =[x S,

< o@ % 20D -15@ %), ... 2%, 1
w=[2'%,.., 0025,

Sz—lkﬁ(zkxl,...,zkxn)

-0 as koo

forall X;,...,X, € X . Hence

(D%, X ) =[O0, X T ==X, 5(%,)]

for all X,...,X, € X. The rest of the proof is

similar tracing to that of Theorem 2.1.

(3.5)
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The following Corollary is an immediate
consequence of Theorem 3.1 concerning the stability
of (1.1).

Corollary 3.2 Let 4,4, and S be nonnegative real

numbers. Let a function g: X —Y satisfies the
inequality
n

izzl:g jzi:;xj =Y (n=i+1)g(x)

i=1 v

ﬂl
A2 1% I
i=1

: S C S 1
E{Hllxillx +Z||Xi||3x}rs<§ or s>
i=1 i=1

IA

s<1 or s>1

Wl

(3.6)

l9 @ XD =190, X 1=
6 g0,

A
A% I (3.7)
i=1

n n
A TTI I + 20 10% 1 ¢
i=1 i=1

for all X,...,X, € X . Then there exists a unique

IN

C*—ternary algebra N - derivation function
0 : X =Y such that

y)
E1
A X1
lg(x)~5(x)|, <4 (M-1)]2-2°|' 3.8)
A\ xR
(n-1)|2-2%|

forall Xe X.
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4. Conclusion

The additive function g(X) = X is the solution of the

additive functional equation (1.1), the functional
equation can be rewritten as follows
n i n

2| 22X = 2 (n=i+1)(x%).

i=1 \_j=1 i=1

That is

X+ (X X )+ (X Xy o+ X))
=nx +(N=1)X, +-- +X .

If we replace, the “+” by “Vv” in the above
identity, then the truth values satisfies the
equivalence relation.
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