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Abstract  
 

In this paper, the authors investigate the 

generalized Ulam-Hyers stability of 

n dimensional quadratic functional equation  
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 with 2n  with the help of fixed point method. An 

application of this functional equation is also 

discussed. 
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1. Introduction 
 

During the last seven decades, the stability problems 

of several functional equations have been extensively 

investigated by a number of authors [1, 2, 3, 4, 5, 6, 

7]. The terminology generalized Ulam - Hyers 

stability originates from these historical backgrounds. 

These terminologies are also applied to the case of 

other functional equations. For more detailed 

definitions of such terminologies, one can refer to [8, 

9, 10, 11, 12, 13, 14].  

 

The solution and stability of following quadratic 

functional equations  

)(2)(2=)()( yfxfyxfyxf          (I.1) 

)()()()( zfyfxfzyxf 
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),()()(= xzfzyfyxf        (I.3) 
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)()()()( xzfzyfyxfzyxf 

),(3)(3)(3= zfyfxf                    (I.4) 

)(2)(2)(2 zfyfzyxf 

)()(2)(2= zyfzxfyxf    (I.5) 

were investigated by S.Czerwik [9], S.M. Jung [15], 

PL.Kannappan [16], Y.H. Bae, K.W. Jun [17], 

M.Arunkumar et al., [18] and I.S. Chang, H.M. Kim 

[20].  

 Recently, M.Arunkumar et. al., [19] introduced and 

investigate the general solution and generalized 

Ulam-Hyers stability of a n dimensional quadratic 

functional equation  
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 with 2n .  

In this paper, the authors studied the stability of the 

above functional equation (I.6) using fixed point 

approach.   

 

2. Fixed Point Stability Results 
 

In this section, the authors proved the generalized 

Ulam - Hyers stability of the n -dimensional 

quadratic functional equation (I.6) in Banach spaces 

with the help of fixed point method.  

 Now we will recall the fundamental results in fixed 

point theory (see [22, 21]).  

Theorem 2.1: (Banach’s contraction principle)   Let 

),( dX  be a complete metric space and consider a 

mapping XXT :  which is strictly contractive 

mapping, that is 

1( ) ( , ) ( , )A d Tx Ty Ld x y for some (Lipschitz 

constant) 1<L . Then, 

(i) The mapping T  has one and only fixed point 

);(=  xTx  

(ii) The fixed point for each given element 
x  is 

globally attractive, that is 

2( ) lim = ,n

n
A T x x
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 for any starting poin tx in X; 
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(iii) One has the following estimation inequalities: 

1

3

1
( ) ( , )   ( , ),

1

n n nA d T x x d T x T x
L

 


 for all 

0,n x X  . 

4

1
( ) ( , )   ( , ),   .

1
A d x x d x x x X

L

   


  

Theorem 2.2: [21] (The alternative of fixed point)      

Suppose that for a complete generalized metric space 

),( dX  and a strictly contractive mapping 

XXT :  with Lipschitz constant L . Then, for 

each given element ,Xx  either 

1

1( ) ( , ) =   0,n nB d T x T x n    or  

)( 2B  there exists a natural number 0n  such that: 

)(i   <),( 1xTxTd nn
 for all 0nn   ; 

)(ii The sequence )( xT n
 is convergent to a 

fixed point 
y  of T  

)(iii  
y  is the unique fixed point of T  in 

the set };<),(:{= 0  yxTdXyY
n
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 for all 

.Yy   

In this section, assume X  be a normed space and Y  

be a Banach space. For proving the stability result we 

define the following: 

Let   be a mapping from 
nX  to Y  defined by  

),,,,(=)( 321 nxxxxx   
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i   and   is the set such that  

 .0=(0),:|= gYXgg    

 The following theorem provide the stability result of 

(I.6) using fixed point method.  

 

Theorem 2.3:  Let YXg :  be a mapping for 

which there exists a function )[0,: nX  with 

the condition 
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 satisfying the functional inequality  

                         xx  )(                            (II.2) 

for all 
n

n Xxxxxx ),,,,(= 321   and 2.n  If 

there exists 1<)(= iLL  such that the function                 

,,00,,
2

,
21)2(

1
=)(

2





















timesn

xx

n
xx   has the 

property  

                  .)(
)(

2
XxxL

x

i

i  



     (II.3) 

 Then there exists a unique quadratic function 

YXQ :  satisfying the functional equation (I.6) 

and  

  .)(
1

)()(
1

Xxx
L

L
xQxg

i







    (II.4) 

 Proof. Let d  be a general metric on ,  such that  

),( hgd
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Therefore T  is strictly contractive mapping on   

with Lipschitz constant .L  Replacing 
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 for all .Xx  Using the definition of )(x  in the 

above equation and for 0=i  , we have  
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 for all .Xx  Using the definition of )(x  in the 

above equation and for 0=i , we have 
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 In order to prove YXQ :  satisfies the 

functional equation (I.6), Replace x  by xk
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 .nXx  Hence Q  satisfies the functional equation 

(I.6). Since Q  is unique fixed point of T  in the set  

 ,<),(|=  Qgdg  

therefore Q  is a unique function such that  
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for all .Xx  This completes the proof of the 

theorem.  

 The following corollaries are immediate 

consequence of Theorems 2.3 concerning the stability 

of (I.6).  

Corollary 2.4  Suppose that a function YXg :  

satisfies the inequality  
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20,> p  are constants. Then there exists a 

unique quadratic mapping YXQ :  such that  
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From the above two cases we arrive (II.17). Hence 

the proof is complete.  
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From the above two cases we arrive (II.19). Hence 

the proof is complete.  

Corollary 2.6  Suppose that a function YXg :  

satisfies the inequality 

                                 )(x                       (II.20) 

 for all 
n

n Xxxxxx ),,,,(= 321  , where 0>  

is a constant. Then there exists a unique quadratic 

mapping YXQ :  such that  

1)3(
)()(




n
xQxg


           (II.21) for all 

Xx .  

  

Proof. The proof of the corollary is similar tracing to 

that of above corollary, by taking 
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3. Application 
 

Consider the quadratic functional equation (I.6), that 

is 
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 Since 
2=)( xxg  is the solution of the functional 

equation, the above equation can be rewritten as 

follows  
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 Now, let us take the variables as consecutive terms, 

we arrive that the partial sums of the consecutive 

terms is equal to the right hand side terms. 

Mathematically  
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