Perturbation of *n*-Dimensional Quadratic Functional Equation: A Fixed Point Approach

S. Murthy¹, M. Arunkumar² and G. Ganapathy³

Abstract

In this paper, the authors investigate the generalized Ulam-Hyers stability of n – dimensional quadratic functional equation

$$\sum_{i=1}^{n} g\left(\sum_{j=1}^{i} x_{j}\right) - \sum_{i=1}^{n} (n-i+1)g(x_{i})$$
$$= \frac{1}{2} \sum_{i=1}^{n-1} (n-i) \sum_{j=1}^{i} (g(x_{j}+x_{i+1}) - g(x_{j}-x_{i+1}))$$

with $n \ge 2$ with the help of fixed point method. An application of this functional equation is also discussed.

Keywords

Quadratic functional equation, Generalized Ulam-Hyers stability, JM Rassias stability.

1. Introduction

During the last seven decades, the stability problems of several functional equations have been extensively investigated by a number of authors [1, 2, 3, 4, 5, 6, 7]. The terminology generalized Ulam - Hyers stability originates from these historical backgrounds. These terminologies are also applied to the case of other functional equations. For more detailed definitions of such terminologies, one can refer to [8, 9, 10, 11, 12, 13, 14].

The solution and stability of following quadratic functional equations

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(I.1)
$$f(x+y+z) + f(x) + f(y) + f(z)$$

$$= f(x+y) + f(y+z) + f(x+z), \quad (I.2)$$

$$f(x-y-z) + f(x) + f(y) + f(z)$$

= f(x-y) + f(y+z) + f(z-x), (I.3)

S. Murthy, Department of Mathematics, Government Arts College for Men, Krishnagiri-635 001, Tamil Nadu, India.

M. Arunkumar, Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, Tamil Nadu, India.

G.Ganapathy, Department of Mathematics, R.M.D. Engineering College, Kavaraipettai - 601 206, Tamil Nadu, India.

$$f(x+y+z)+f(x-y)+f(y-z)+f(z-x) = 3f(x)+3f(y)+3f(z), \quad (I.4)$$

$$f(2x\pm y\pm z)+2f(y)+2f(z) = 2f(x\pm y)+2f(x\pm z)+f(y+z) \quad (I.5)$$

were investigated by S.Czerwik [9], S.M. Jung [15], PL.Kannappan [16], Y.H. Bae, K.W. Jun [17], M.Arunkumar et al., [18] and I.S. Chang, H.M. Kim [20].

Recently, M.Arunkumar et. al., [19] introduced and investigate the general solution and generalized Ulam-Hyers stability of a n – dimensional quadratic functional equation

$$\sum_{i=1}^{n} g\left(\sum_{j=1}^{i} x_{j}\right) - \sum_{i=1}^{n} (n-i+1)g(x_{i})$$

= $\frac{1}{2} \sum_{i=1}^{n-1} (n-i) \sum_{j=1}^{i} \left(g(x_{j}+x_{i+1}) - g(x_{j}-x_{i+1})\right)$ (I.6)

with $n \ge 2$.

1

In this paper, the authors studied the stability of the above functional equation (I.6) using fixed point approach.

2. Fixed Point Stability Results

In this section, the authors proved the generalized Ulam - Hyers stability of the n-dimensional quadratic functional equation (I.6) in Banach spaces with the help of fixed point method.

Now we will recall the fundamental results in fixed point theory (see [22, 21]).

Theorem 2.1: (*Banach's contraction principle*) Let (X,d) be a complete metric space and consider a mapping $T: X \rightarrow X$ which is strictly contractive

mapping, that is

 $(A_1) d(Tx,Ty) \le Ld(x,y)$ for some (Lipschitz constant) L < 1. Then,

(i) The mapping T has one and only fixed point $x^* = T(x^*)$;

(ii) The fixed point for each given element x^* is globally attractive, that is

(A_2) $\lim T^n x = x^*$, for any starting point x in X;

(iii) One has the following estimation inequalities:

$$(A_{3}) \ d(T^{n}x, x^{*}) \leq \frac{1}{1-L} \ d(T^{n}x, T^{n+1}x), \text{ for all} \\ n \geq 0, x \in X .$$
$$(A_{4}) \ d(x, x^{*}) \leq \frac{1}{1-L} \ d(x, x^{*}), \forall \ x \in X.$$

Theorem 2.2: [21] (*The alternative of fixed point*) Suppose that for a complete generalized metric space (X,d) and a strictly contractive mapping $T: X \to X$ with Lipschitz constant L. Then, for each given element $x \in X$, either

 $(B_1) d(T^n x, T^{n+1} x) = \infty \quad \forall n \ge 0, or$

 (B_2) there exists a natural number n_0 such that:

(i)
$$d(T^n x, T^{n+1} x) < \infty$$
 for all $n \ge n_0$;
(ii) The sequence $(T^n x)$ is convergent to a
fixed point y^* of T
(iii) y^* is the unique fixed point of T in
the set $Y = \{y \in X : d(T^{n_0} x, y) < \infty\}$;
(iv) $d(y^*, y) \le \frac{1}{1-L} d(y,Ty)$ for all

 $y \in Y$.

In this section, assume X be a normed space and Y be a Banach space. For proving the stability result we define the following:

Let Ψ be a mapping from X^n to Y defined by $\Psi(x) = \Psi(x_1, x_2, x_3, ..., x_n)$ $= \sum_{i=1}^n g\left(\sum_{j=1}^i x_j\right) - \sum_{i=1}^n (n-i+1)g(x_i)$ $-\frac{1}{2} \sum_{i=1}^{n-1} (n-i) \sum_{j=1}^i (g(x_j + x_{i+1}) - g(x_j - x_{i+1}))$

for all $x \in X^n$ and $n \ge 2$, ζ_i is a constant such that

$$\varsigma_i = \begin{cases} 2 & if \quad i = 0\\ \frac{1}{2} & if \quad i = 1, \\ \Omega = \{g \mid g : X \to Y, g(0) = 0\}. \end{cases}$$

The following theorem provide the stability result of (I.6) using fixed point method.

Theorem 2.3: Let $g: X \to Y$ be a mapping for which there exists a function $\phi: X^n \to [0, \infty)$ with the condition

$$\lim_{n\to\infty}\frac{\phi(\varsigma_i^k x)}{\varsigma_i^{2k}} = 0, \qquad (II.1)$$

satisfying the functional inequality

$$\left\|\Psi(x)\right\| \le \phi(x) \tag{II.2}$$

for all $x = (x_1, x_2, x_3, ..., x_n) \in X^n$ and $n \ge 2$. If there exists L = L(i) < 1 such that the function

$$x \to \beta(x) = \frac{1}{2(n-1)} \phi\left(\frac{x}{2}, \frac{x}{2}, \frac{0, \dots, 0}{n-2 \text{ times}}\right), \text{ has the}$$

property

$$\frac{\beta(\zeta_i x)}{\zeta_i^2} \le L\beta(x) \quad \forall \ x \in X. \quad (II.3)$$

Then there exists a unique quadratic function $Q: X \rightarrow Y$ satisfying the functional equation (I.6) and

$$\|g(x) - Q(x)\| \le \frac{L^{1-i}}{1-L}\beta(x) \quad \forall x \in X.$$
 (II.4)

Proof. Let d be a general metric on Ω , such that d(g,h)

$$= \inf \left\{ K \in (0,\infty) : \left\| g(x) - h(x) \right\| \le K \beta(x), x \in X \right\}.$$

It is easy to see that (Ω, d) is complete. Define

$$T: \Omega \to \Omega$$
 by $Tg(x) = \frac{1}{\varsigma_i^2} g(\varsigma_i x)$, for all

 $x \in X$. For $g, h \in \Omega$ and $x \in X$, we have d(g,h) = K

$$\Rightarrow \|g(x) - h(x)\| \le K\beta(x)$$

$$\Rightarrow \left\|\frac{g(\varsigma_i x)}{\varsigma_i^2} - \frac{h(\varsigma_i x)}{\varsigma_i^2}\right\| \le \frac{1}{\varsigma_i^2} K\beta(\varsigma_i x)$$

$$\Rightarrow \|Tg(x) - Th(x)\| \le \frac{1}{\varsigma_i^2} K\beta(\varsigma_i x)$$

$$\Rightarrow \|Tg(x) - Th(x)\| \le LK\beta(x)$$

$$\Rightarrow d(Tg(x), Th(x)) \le KL$$

$$\Rightarrow d(Tg, Th) \le Ld(g, h).$$

Therefore T is strictly contractive mapping on Ω with Lipschitz constant L. Replacing

$$x = (x_1, x_2, x_3, ..., x_n)$$
 by $(x, x, \underbrace{0, ..., 0}_{n-2 \text{ times}})$ in

(II.2), we get

$$\|g(2x) - 4g(x)\| \le \frac{1}{2(n-1)}\phi(x, x, \underbrace{0, \dots, 0}_{n-2 \text{ times}})$$
(II.5)

for all $x \in X$. Using the definition of $\beta(x)$ in the above equation and for i = 0, we have

$$\left\|\frac{g(2x)}{4} - g(x)\right\| \le \frac{1}{4}\beta(2x)$$

i.e., $||Tg(x) - g(x)|| \le L\beta(x)$

for all $x \in X$. Hence, we arrive

$$d(Tg(x) - g(x)) \le L = L^{1-i}$$
. (II.6)

for all $x \in X$. Replacing x by $\frac{x}{2}$ in (II.5), we get

$$\left\| (g(x) - 4g\left(\frac{x}{2}\right)) \right\| \leq \frac{1}{2(n-1)} \phi \left(\frac{x}{2}, \frac{x}{2}, \frac{0, \dots, 0}{n-2 \text{ times}}\right)$$
(II.7)

for all $x \in X$. Using the definition of $\beta(x)$ in the above equation and for i = 0, we have

$$\left\|g(x) - 4g\left(\frac{x}{2}\right)\right\| \le \beta(x)$$

i.e., $||g(x) - Tg(x)|| \le \beta(x)$ for all $x \in X$. Hence, we arrive

$$d(g(x) - Tg(x)) \le 1 = L^{1-i}$$
 (II.8)

for all $x \in X$. From (II.6) and (II.8), we can conclude

$$d(g(x) - Tg(x)) \le L^{1-i} < \infty.$$
(II.9)

for all $x \in X$. Now from the fixed point alternative in both cases, it follows that there exists a fixed point Q of T in Ω such that

$$Q(x) = \lim_{k \to \infty} \frac{g\left(\varsigma_i^k x\right)}{\varsigma_i^{2k}}, \forall x \in X.$$
 (II.10)

In order to prove $Q: X \to Y$ satisfies the functional equation (I.6), Replace x by $\zeta_i^k x$ and divide by ζ_i^{2k} in (II.2), we arrive

$$\left\|\frac{1}{\varsigma_i^{2k}}\Psi(\varsigma_i^k x)\right\| \le \frac{1}{\varsigma_i^{2k}}\phi(\varsigma_i^k x) \qquad (\text{II.11})$$

for all $x \in X^n$. This implies that,

$$\left\|\sum_{\ell=1}^{n} \frac{1}{\varsigma_{i}^{2k}} g\left(\sum_{j=1}^{\ell} \varsigma_{i}^{k} x_{j}\right) - \sum_{\ell=1}^{n} \frac{(n-\ell+1)}{\varsigma_{i}^{2k}} g\left(\varsigma_{i}^{k} x_{\ell}\right) - \frac{1}{2\varsigma_{i}^{2k}} \sum_{\ell=1}^{n-1} (n-\ell) \sum_{j=1}^{\ell} [g\left(\varsigma_{i}^{k} x_{j} + \varsigma_{i}^{k} x_{\ell+1}\right) - g\left(\varsigma_{i}^{k} x_{j} - \varsigma_{i}^{k} x_{\ell+1}\right)] \right\| \leq \frac{1}{\varsigma_{i}^{2k}} \phi\left(\varsigma_{i}^{k} x\right)$$
(II.12)

 $x \in X^n$. Letting $k \to \infty$ in the above inequality and using the choice of Q and ϕ , we arrive

$$\sum_{\ell=1}^{n} Q\left(\sum_{j=1}^{\ell} x_{j}\right) - \sum_{\ell=1}^{n} (n-\ell+1)Q(x_{\ell})$$

= $\frac{1}{2} \sum_{\ell=1}^{n-1} (n-\ell) \sum_{j=1}^{\ell} [Q(x_{j}+x_{\ell+1}) - Q(x_{j}-x_{\ell+1})]$
(II.13)

 $x \in X^n$. Hence Q satisfies the functional equation (I.6). Since Q is unique fixed point of T in the set

$$\Delta = \{g \in \Omega \mid d(g, Q) < \infty\},\$$

therefore Q is a unique function such that

$$\left\|g(x) - Q(x)\right\| \le K\beta(x) \,\forall \, x \in X. \quad (\text{II.14})$$

Again using the fixed point alternative, we obtain

$$d(g,Q) \leq \frac{1}{1-L} d(g,Tg)$$

i.e., $d(g,Q) \leq \frac{L^{1-i}}{1-L}$
i.e., $\|g(x) - Q(x)\| \leq \frac{L^{1-i}}{1-L} \beta(x).$ (II.15)

for all $x \in X$. This completes the proof of the theorem.

The following corollaries are immediate consequence of Theorems 2.3 concerning the stability of (I.6).

Corollary 2.4 Suppose that a function $g: X \rightarrow Y$ satisfies the inequality

$$\left\|\Psi(x)\right\| \le \varepsilon \sum_{\ell=1}^{n} \left\|x_{\ell}\right\|^{p} \qquad (II.16)$$

for all $x = (x_1, x_2, x_3, ..., x_n) \in X^n$, where $\varepsilon > 0, p \neq 2$ are constants. Then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$\|g(x) - Q(x)\| \le \frac{\varepsilon}{(n-1)|4-2^{p}|} \|x\|^{p} \ \forall x \in X$$
(II.17)

Proof. Let $\phi(x) = \varepsilon \sum_{\ell=1}^{n} ||x_{\ell}||^{p}$

for all $x = (x_1, x_2, x_3, \dots, x_n) \in X^n$. Then for p < 2, i = 0 and for p > 2, i = 1, we arrive

$$\frac{\phi(\varsigma_i^k x)}{\varsigma_i^{2k}} = \frac{\phi(\varsigma_i^k x_1, \varsigma_i^k x_2, \varsigma_i^k x_3, \dots, \varsigma_i^k x_n)}{\varsigma_i^{2k}}$$
$$= \frac{\varepsilon}{\varsigma_i^{2k}} \sum_{\ell=1}^n \| \varsigma_i^k x_\ell \|^p = \varepsilon \, \varsigma_i^{(p-2)k} \sum_{\ell=1}^n \| x_\ell \|^p$$

 $\rightarrow 0$ as $k \rightarrow \infty$.

Thus, (II.1) is holds. But we have

$$\beta(x) = \frac{1}{2(n-1)} \phi\left(\frac{x}{2}, \frac{x}{2}, \frac{0, \dots, 0}{n-2 \text{ times}}\right)$$

has the property $\frac{1}{\zeta_i^2} \beta(\zeta_i x) = L\beta(x) \,\forall x \in X$

Hence

$$\beta(x) = \frac{\varepsilon}{2(n-1)} \left(\left\| \frac{x}{2} \right\|^p + \left\| \frac{x}{2} \right\|^p \right) = \frac{2^{-p} \varepsilon}{(n-1)} \left\| x \right\|^p.$$

for all $x \in X$. Replace x by $\zeta_i x$ and divide by ζ_i^2 in above equality, we get

$$\frac{1}{\varsigma_i^2}\beta(\varsigma_i x) = \frac{2^{-p}\varepsilon}{(n-1)\varsigma_i^2} \|\varsigma_i x\|^p$$
$$= \varsigma_i^{p-2} \frac{2^{-p}\varepsilon}{(n-1)} \|x\|^p = \varsigma_i^{p-2}\beta(x)$$

for all $x \in X$. Hence the inequality (II.3) holds when, $L = \zeta_i^{p-2}$, that is

$$L = \begin{cases} 2^{p-2} & \text{for } i = 0, p < 2, \\ 2^{2-p} & \text{for } i = 1, p > 2. \end{cases}$$

Now from (II.4), we prove the following cases: **Case:1** $L = 2^{p-2}$ for p < 2 if i = 0

$$\|g(x) - Q(x)\| \le \frac{L^{1-0}}{1 - L} \beta(x)$$
$$= \frac{2^{p-2}}{(1 - 2^{p-2})} \frac{2^{-p} \varepsilon}{(n-1)} \|x\|^{p}$$

$$= \frac{\varepsilon}{(n-1)(4-2^{p})} ||x||^{p}$$

Case:2 $L = 2^{2^{-p}}$ for $p > 2$ if $i = 1$
 $||g(x) - Q(x)|| \le \frac{L^{1-1}}{1-L}\beta(x)$
 $= \frac{1}{(1-2^{2^{-p}})} \frac{2^{-p}\varepsilon}{(n-1)} ||x||^{p}$
 $= \frac{\varepsilon}{(n-1)(2^{p}-4)} ||x||^{p}$

From the above two cases we arrive (II.17). Hence the proof is complete.

Corollary 2.5 Suppose that a function $g: X \to Y$ satisfies the inequality

$$\left\|\Psi(x)\right\| \le \varepsilon \left\{ \sum_{\ell=1}^{n} \|x_{\ell}\|^{np} + \prod_{\ell=1}^{n} \|x_{\ell}\|^{p} \right\} \quad (II.18)$$

for all $x = (x_1, x_2, x_3, ..., x_n) \in X^n$, where ε , pare constants with $\varepsilon > 0, p \neq \frac{2}{n}$. Then there exists a unique quadratic mapping $Q: X \to Y$ such that $\|g(x) - Q(x)\| \leq \frac{\varepsilon}{(n-1)|4 - 2^{np}|} \|x\|^{np}$ (II.19) for all $x \in X$. Proof. Let $\phi(x) = \varepsilon \left\{ \sum_{\ell=1}^n \|x_\ell\|^{np} + \prod_{\ell=1}^n \|x_\ell\|^p \right\}$ for all $x = (x_1, x_2, x_3, ..., x_n) \in X^n$. Then for $p < \frac{1}{2}, i = 0$ and for $p > \frac{1}{2}, i = 1$, we arrive $\frac{\phi(\varsigma_i^k x)}{\varsigma_i^{2k}} = \frac{\phi(\varsigma_i^k x_1, \varsigma_i^k x_2, \varsigma_i^k x_3, ..., \varsigma_i^k x_n)}{\varsigma_i^{2k}}$ $= \frac{\varepsilon}{\varsigma_i^{2k}} \left\{ \sum_{\ell=1}^n \|\varsigma_i^k x_\ell\|^{np} + \prod_{\ell=1}^n \|\varsigma_i^k x_\ell\|^p \right\}$ $= \varsigma_i^{(np-2)k} \varepsilon \left\{ \sum_{\ell=1}^n \|x_\ell\|^{np} + \prod_{\ell=1}^n \|x_\ell\|^p \right\}$ $\to 0$ as $k \to \infty$. Thus, (1) is holds. But we have

$$\beta(x) = \frac{1}{2(n-1)} \phi\left(\frac{x}{2}, \frac{x}{2}, \frac{0, \dots, 0}{n-2 \text{ times}}\right)$$

has the property $\frac{1}{\zeta_i^2} \beta(\zeta_i x) = L\beta(x) \forall x \in X.$

Hence

$$\beta(x) = \frac{\varepsilon}{2(n-1)} \left(\left\| \frac{x}{2} \right\|^{np} + \left\| \frac{x}{2} \right\|^{np} \right) = \frac{2^{2-np} \varepsilon}{(n-1)} \left\| x \right\|^{np}.$$

for all $x \in X$. Replace x by $\zeta_i x$ and divide by ζ_i^2 in the above equality, we get

$$\frac{1}{\varsigma_i^2} \beta(\varsigma_i x) = \frac{2^{-np} \varepsilon}{(n-1)\varsigma_i^2} \|\varsigma_i x\|^p = \varsigma_i^{np-2} \frac{2^{-np} \varepsilon}{(n-1)} \|x\|^p$$
$$= \varsigma_i^{np-2} \beta(x)$$

for all $x \in X$. Hence the inequality (II.3) holds when , $L = \zeta_i^{np-2}$, that is

$$L = \begin{cases} 2^{np-2} \text{ for } i = 0, \, p < \frac{1}{2}, \\ 2^{2-np} \text{ for } i = 1, \, p > \frac{1}{2}. \end{cases}$$

Now from (II.4), we prove the following cases:

$$\begin{aligned} \text{Case:1} \quad L &= 2^{np-2} \text{ for } p < \frac{1}{2} \text{ if } i = 0 \\ \|g(x) - Q(x)\| &\leq \frac{L^{1-0}}{1 - L} \beta(x) \\ &= \frac{2^{np-2}}{(1 - 2^{np-2})} \frac{2^{-np} \varepsilon}{(n-1)} \|x\|^{np} \\ &= \frac{\varepsilon}{(n-1)(4 - 2^{np})} \|x\|^{np} \end{aligned}$$

$$\begin{aligned} \text{Case:2} \quad L &= 2^{2-np} \text{ for } p > \frac{1}{2} \text{ if } i = 1 \\ \|g(x) - Q(x)\| &\leq \frac{L^{1-1}}{1 - L} \beta(x) \\ &= \frac{1}{(1 - 2^{2-np})} \frac{2^{-np} \varepsilon}{(n-1)} \|x\|^{np} \end{aligned}$$

From the above two cases we arrive (II.19). Hence the proof is complete.

Corollary 2.6 Suppose that a function $g: X \to Y$ satisfies the inequality

$$\left\|\Psi(x)\right\| \le \varepsilon \tag{II.20}$$

for all $x = (x_1, x_2, x_3, ..., x_n) \in X^n$, where $\varepsilon > 0$ is a constant. Then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$\left\|g(x) - Q(x)\right\| \le \frac{\varepsilon}{3(n-1)}$$
(II.21) for all $x \in X$.

Proof. The proof of the corollary is similar tracing to that of above corollary, by taking

$$L = \begin{cases} 2^{-2} & \text{for } i = 0, p = 0, \\ 2^{2} & \text{for } i = 1, p = 0. \end{cases}$$

3. Application

Consider the quadratic functional equation (I.6), that is

$$\sum_{i=1}^{n} g\left(\sum_{j=1}^{i} x_{j}\right) - \sum_{i=1}^{n} (n-i+1)g(x_{i})$$
$$= \frac{1}{2} \sum_{i=1}^{n-1} (n-i) \sum_{j=1}^{i} (g(x_{j}+x_{i+1}) - g(x_{j}-x_{i+1}))$$

Since $g(x) = x^2$ is the solution of the functional equation, the above equation can be rewritten as follows

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{i} x_j \right)^2 = \frac{1}{2} \sum_{i=1}^{n-1} (n-i) \sum_{j=1}^{i} \left((x_j + x_{i+1})^2 - (x_j - x_{i+1})^2 \right) + \sum_{i=1}^{n} (n-i+1) (x_i)^2$$

Now, let us take the variables as consecutive terms, we arrive that the partial sums of the consecutive terms is equal to the right hand side terms. Mathematically

$$[x_1]^2 + [x_1 + x_2]^2 + \dots + [x_1 + x_2 + x_3 + \dots + x_n]^2$$

= $\frac{1}{2} \sum_{i=1}^{n-1} (n-i) \sum_{j=1}^{i} ([x_j + x_{i+1}]^2 - [x_j - x_{i+1}]^2)$
+ $(n[x_1]^2 + (n-1)[x_2]^2 + \dots + [x_n]^2).$

References

[1] **S.M. Ulam**, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

- [2] **D.H. Hyers**, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.
- [3] **T. Aoki**, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- [4] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
- [5] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
- [6] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
- [7] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No.08, 36-47.
- [8] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
- [9] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
- [10] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.
- [11] **S.M. Jung**, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- [12] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
- [13] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
- [14] Y.S. Jung, I.S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306 (2005), 752-760.
- [15] S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126-137.
- [16] Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math., 27, No.3-4,(1995), 368-372.
- [17] Y.H. Bae and K.W. Jun, On the Hyer-Ulam-Rassias stability of a quadratic functional equation, Bull.Korean.Math. Soc., 38(2) (2001) 325-336.

- [18] M. Arunkumar, S. Jayanthi, S. Hema Latha, Stability of quadratic Derivations of Arunquadratic functional equation, International Journal Mathematical Sciences and Engineering Applications, Vol. 5, No.4, September 2011, 433-443.
- [19] M. Arunkumar, S. Murthy, G. Ganapathy, Solution and Stability of n-dimensional Quadratic functional equation, ICCMSC, 2012 Computer and Information Science(CCIS), Springer Verlag-Germany, Vol. 238, (2012), 384-394.
- [20] I.S. Chang, H.M. Kim, On the Hyers-Ulam stability of a quadratic functional equations, J. Ineq. Appl. Math., 33 (2002), 1-12.
- [21] B.Margoils and J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 74 (1968), 305-309.
- [22] **V.Radu**, The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory Cluj-Napoca, Vol. IV, 2003, in press.

Dr. S.Murthy is currently working as a Associate Professor and Head in the Department of Mathematics, Government Arts College, Kirshnagiri. He has guided more than 20 M.Phil Scholars and guiding 5 Ph.D Scholars and published 25 papers in National and international journals.

Dr. M.Arunkumar is currently working as a assistant professor in the Department of Mathematics, Government Arts College, Tiruvannamalai. He is a life member in Indian Mathematical Society and he has published 75 papers in National and international journals.

Mr. G.Ganapathy is currently working as a assistant professor in the Department of Mathematics, R.M.D. Engineering College, Kavaraipettai and he has published 8 papers in National and international journals