
Understanding Laravel's `withCount()` with Query Scopes

What is `withCount()` in Laravel?

`withCount()` is a Laravel method used to count related records and
include the count as a column in the query result.

Basic Usage

```php

Post::withCount('reviews')->get();

```

This adds a `reviews_count` column to each `Post` instance, showing
how many related `reviews` exist.

Passing Relationships as an Array in `withCount()`

It is possible to pass relationships as an array inside `withCount()`.
This allows applying conditions on the counted relationship:

```php

Post::withCount([

    'reviews' => function (Builder $q) {

        $q->where('created_at', '>=', '2024-01-01'); // Count only reviews
from 2024 onwards

    }

])->get();

```

- The **array key** `'reviews'` represents the relationship.

- The **closure** modifies the query, filtering `reviews` by date before
counting them.

Using `withCount()` in a Query Scope

A query scope encapsulates query logic inside a model for reuse.

Example: `scopePopular` for Sorting by Review Count

```php

use Illuminate\Database\Eloquent\Builder;

public function scopePopular(Builder $query, $from = null, $to = null):
Builder

{

    return $query->withCount([

        'reviews' => function (Builder $q) use ($from, $to) {

            if ($from && !$to) {

                $q->where('created_at', '>=', $from);

            } elseif (!$from && $to) {

                $q->where('created_at', '<=', $to);

            } elseif ($from && $to) {

                $q->whereBetween('created_at', [$from, $to]);

            }

        }

    ])->orderBy('reviews_count', 'desc');

}

```

How It Works

- **Counts `reviews`** associated with each model instance.

- **Filters reviews** by creation date (`$from`, `$to`).

- **Orders results** by `reviews_count` in descending order (most
reviewed first).

Using the Scope in Queries

Fetch Most Popular Posts (All Time)

```php

$popularPosts = Post::popular()->get();

```

Fetch Most Popular Posts Within a Date Range

```php

$popularPosts = Post::popular('2024-01-01', '2024-02-01')->get();

```

Fetch Popular Posts Since a Specific Date

```php

$popularPosts = Post::popular('2024-01-01')->get();

```

Fetch Popular Posts Until a Specific Date

```php

$popularPosts = Post::popular(null, '2024-02-01')->get();

```

Alternative Approach: Using a Separate Relationship

If you need multiple filtered counts, you can define different
relationships in your model:

```php

public function recentReviews()

{

    return $this->hasMany(Review::class)->where('created_at', '>=',
now()->subMonth());

}



```

Then, use:

```php

Post::withCount('recentReviews')->get();

```

Conclusion

 Passing relationships as an **array** inside `withCount()` is valid.
Allows **modifying count queries** with conditions. Encapsulating
logic in a **query scope** makes it reusable. Great for sorting models
by related record counts dynamically!

