International Journal of Advanced Computer Research (IJACR) ISSN (Print): 2249-7277 ISSN (Online): 2277-7970 Volume - 8 Issue - 37 July - 2018
  1. 1
    Google Scholar
An efficient k-means algorithm for the cluster head selection based on SAW and WPM

Anil Khandelwal and Yogendra Kumar Jain

Abstract

A wireless sensor network (WSN) offers the aggregation of data for the communication and processing in the exterior area or the base station. The main purpose of this study was to efficiently select the cluster heads (CHs) and carry out the synchronous data sink operation for the efficient energy and time utilization. An efficient approach based on the k-means algorithm for the cluster head selection has been proposed. It also includes simple additive weighting (SAW) and weighted product method (WPM) for the data sink operation priority by the decision performance ranking. In this approach, weights are assigned and pre-processed on the basis of the node operations or the attribute values. These values are used for clustering of the nodes. K-means have been applied for the clustering. The resultant data are then processed with the decision performance ranking methods. We have used SAW and WPM for the selection of CHs from the clusters. The variations in SAW and WPM results are minor and these approaches are efficient in providing the proper CHs selection from the obtained clusters. The result of the random selection priority scale also offers an energy efficient system. The proposed approach results in less delay in packet delivery and offers efficient energy consumption in contrast to the traditional method.

Keyword

WSN, CHs, K-means, SAW, WPM.

Cite this article

.An efficient k-means algorithm for the cluster head selection based on SAW and WPM. International Journal of Advanced Computer Research. 2018;8(37):191-202. DOI:10.19101/IJACR.2018.836022

Refference

[1]Bergelt R, Vodel M, Hardt W. Energy efficient handling of big data in embedded, wireless sensor networks. In sensors applications symposium 2014 (pp. 53-8). IEEE.

[2]Vodel M, Hardt W. Data aggregation in resource-limited wireless communication environments-differences between theory and praxis. In international conference on control, automation and information sciences 2012 (pp. 208-13). IEEE.

[3]Sarma HK. Grid based data gathering in multi-channel wireless sensor network. In international conference on information technology 2016 (pp. 114-7). IEEE.

[4]Hung CC, Hsieh CC. Big data management on wireless sensor networks. In big data analytics for sensor-network collected intelligence 2017 (pp. 99-116).

[5]Roadknight C, Parrott L, Boyd N, Marshall IW. Real-time data management on a wireless sensor network. International Journal of Distributed Sensor Networks. 2005; 1(2):215-25.

[6]Azad P, Sharma V. Cluster head selection in wireless sensor networks under fuzzy environment. ISRN Sensor Networks. 2013:1-8.

[7]Zeb A, Islam AM, Zareei M, Al Mamoon I, Mansoor N, Baharun S, et al. Clustering analysis in wireless sensor networks: the ambit of performance metrics and schemes taxonomy. International Journal of Distributed Sensor Networks. 2016; 12(7): 1-24.

[8]Li J, Cai Z, Li J. Data management in sensor networks. Wireless Sensor Networks and Applications. Signals and Communication Technology. 2008. Springer.

[9]Mahmood A, Shi K, Khatoon S, Xiao M. Data mining techniques for wireless sensor networks:a survey. International Journal of Distributed Sensor Networks. 2013; 9(7).

[10]Izadi D, Abawajy JH, Ghanavati S, Herawan T. A data fusion method in wireless sensor networks. Sensors. 2015; 15(2):2964-79.

[11]Anisi MH, Abdullah AH, Razak SA. Energy-efficient data collection in wireless sensor networks. Wireless Sensor Network. 2011; 3(10):329-33.

[12]Upadhyay H, Mehta M. Improved APAC algorithm for minimizing delay in wireless sensor network with mobile sink. International Journal of Advanced Computer Research. 2017; 7(28):23-31.

[13]Kim KC, Kim CS. Parallel processing of sensor network data using column-oriented databases. AASRI Procedia. 2013; 5:2-8.

[14]Mota A, Oliveira LB, Rocha FF, Riserio R, Loureiro AA, Coelho CJ, et al. WISENEP: a network processor for wireless sensor networks. In proceedings of computers and communications 2006 (pp. 8-14). IEEE.

[15]Tian Y, Lv Y, Tong L. Design and application of sink node for wireless sensor network. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 2013; 32(2):531-44.

[16]Rhee S, Liu S. Maximizing data reliability in wireless sensor networks. Sensor Magazine Online. 2005.

[17]Palpanas T. Real-time data analytics in sensor networks. In managing and mining sensor data 2013 (pp. 173-210). Springer.

[18]Ghayvat H, Liu J, Mukhopadhyay SC, Gui X. Wellness sensor networks: a proposal and implementation for smart home for assisted living. IEEE Sensors Journal. 2015; 15(12):7341-8.

[19]Dubey AK, Gupta U, Jain S. Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. International Journal of Computer Assisted Radiology and Surgery. 2016; 11(11):2033-47.

[20]Dubey AK, Gupta U, Jain S. Comparative study of k-means and fuzzy c-means algorithms on the breast cancer data. International Journal on Advanced Science, Engineering and Information Technology. 2018; 8(1):18-29.

[21]Dadda A, Ouhbi I. A decision support system for renewable energy plant projects. In fifth international conference on next generation networks and services 2014 (pp. 356-62). IEEE.

[22]Kolios A, Mytilinou V, Lozano-Minguez E, Salonitis K. A comparative study of multiple-criteria decision-making methods under stochastic inputs. Energies. 2016; 9(7):1-21.

[23]Fishburn PC. Additive utilities with incomplete product set: applications to priorities and assignments. Operations Research. 1967; 15(3):537-42.

[24]Bridgman PW. Dimensional analysis. New Haven, CN: Yale University Process; 1992.

[25]Miller DW, Starr MK. Executive decisions and operations research. Englewood Cliffs, NJ: Prentice-Hall; 1963.

[26]Kamyabpour N, Hoang DB. Modeling overall energy consumption in Wireless Sensor Networks. arXiv preprint arXiv:1112.5800. 2011.

[27]Nagamalar T, Rangaswamy TR. Energy efficient cluster based approach for data collection in wireless sensor networks with multiple mobile sink. In international conference on industrial instrumentation and control 2015 (pp. 348-53). IEEE.