Power flow and harmonics analysis of wind turbine integration into distribution networks
Muhammad Daud, Robi Kurniawan and Arnawan Hasibuan
Abstract
The rapid growth of wind energy capacity worldwide presents significant operational and control challenges for the reliable and stable operation of power networks. Key issues include the variability of generation, power quality concerns such as frequency and voltage stability, and harmonics, which hinder broader wind energy integration. This study investigated the effects of integrating wind turbine systems on power grid stability. Using electrical transient analyzer program (ETAP) software, both steady-state and transient conditions were evaluated through load flow and dynamic analysis. Load flow analysis assessed system performance under various statistical scenarios, while dynamic analysis involved inducing a three-phase short circuit at critical network nodes to observe power flow dynamics and harmonic effects. Results indicate that, prior to wind turbine integration, voltage drops from nominal levels occur. Post-integration, wind turbines contribute to higher voltage values at each bus. Simulations before and after integration show that total harmonic distortion (THD) voltage and current at each bus remain within institute of electrical and electronics engineers (IEEE) 519-2022 limits. These findings highlight the potential benefits of wind turbine integration for enhancing voltage stability without compromising power quality.
Keyword
Wind turbine, Power flow, Harmonic analysis, Distribution network, ETAP software.
Cite this article
Daud M, Kurniawan R, Hasibuan A.Power flow and harmonics analysis of wind turbine integration into distribution networks. International Journal of Advanced Technology and Engineering Exploration. 2024;11(118):1256-1271. DOI:10.19101/IJATEE.2024.111100363
Refference
[1]PP Number. Concerning national energy policy. State Secretariat of the Republic of Indonesia, Jakarta. 2006.
[2]https://p3tkebt.esdm.go.id/pilot-plan-project/energi_angin/potensi-energi-angin-indonesia-2020. Accessed 23 November 2022.
[3]Bird L, Milligan M. Lessons from large-scale renewable energy integration studies. In world renew energy forum 2012 (pp. 2400-6). WREF.
[4]Akram U, Khalid M, Shafiq S. Optimal sizing of a wind/solar/battery hybrid grid‐connected microgrid system. IET Renewable Power Generation. 2018; 12(1):72-80.
[5]Xia S, Zhang Q, Hussain ST, Hong B, Zou W. Impacts of integration of wind farms on power system transient stability. Applied Sciences. 2018; 8(8):1-16.
[6]Abadi I, Penangsang O, Praseto RL. A study of harmonics in PV-wind turbine micro-grid system. International Journal of Applied Engineering Research. 2015; 10(9):23621-9.
[7]Kanchanaharuthai A, Chankong V, Loparo KA. Transient stability and voltage regulation in multimachine power systems vis-à-vis statcom and battery energy storage. IEEE Transactions on Power Systems. 2014; 30(5):2404-16.
[8]Soedibyo I, MT M, Ashari IM, Eng M. Design of voltage and frequency control in electricity system in remote island with PV-wind turbine-fuel cell plants based on fuzzy logic control to support national new renewable energy independence. 2020.
[9]Mahela OP, Shaik AG. Power quality detection in distribution system with wind energy penetration using discrete wavelet transform. In second international conference on advances in computing and communication engineering 2015 (pp. 328-33). IEEE.
[10]Ahmed M, Aziz T. An approach of incorporating harmonic mitigation units in an industrial distribution network with renewable penetration. Energy Reports. 2021; 7:6273-91.
[11]Bradt M, Badrzadeh B, Camm E, Mueller D, Schoene J, Siebert T, et al. Harmonics and resonance issues in wind power plants. In PES T&D 2012 (pp. 1-8). IEEE.
[12]Francisco CD. Harmonics, power systems, and smart grids. CRC Press; 2017.
[13]Mokeke S, Thamae LZ. The impact of intermittent renewable energy generators on Lesotho national electricity grid. Electric Power Systems Research. 2021; 196:107196.
[14]WS WS, Nappu MB, Arief A. Simulasi under-voltage load shedding dengan masuknya integrasi pembangkit listrik tenaga angin. Jurnal Penelitian Enjiniring. 2017; 21(2):58-65.
[15]Kettner AM, Reyes-chamorro L, Becker JK, Zou Z, Liserre M, Paolone M. Harmonic power-flow study of polyphase grids with converter-interfaced distributed energy resources-part I: modeling framework and algorithm. IEEE Transactions on Smart Grid. 2021; 13(1):458-69.
[16]Putri R, Hasibuan A, Ezwarsyah E, Jannah M, Kurniawan R, Siregar WV, et al. Wind power plant as an alternative source at Tengku Bullah Mosque, Malikussaleh university. RELE (Electrical and Energy Engineering): Journal of Electrical Engineering. 2022; 5(1):39-44.
[17]Lee JC, Fields MJ, Lundquist JK. Assessing variability of wind speed: comparison and validation of 27 methodologies. Wind Energy Science. 2018; 3(2):845-68.
[18]Gaidai O, Xing Y, Balakrishna R, Xu J. Improving extreme offshore wind speed prediction by using deconvolution. Heliyon. 2023; 9(2).
[19]Wang Z, Bu S. Probabilistic frequency stability analysis considering dynamics of wind power generation with different control strategies. IEEE Transactions on Power Systems. 2024; 39(5):6412-25.
[20]Razmi D, Lu T, Papari B, Akbari E, Fathi G, Ghadamyari M. An overview on power quality issues and control strategies for distribution networks with the presence of distributed generation resources. IEEE Access. 2023; 11:10308-25.
[21]Wu D, Seo GS, Xu L, Su C, Kocewiak Ł, Sun Y, et al. Grid integration of offshore wind power: standards, control, power quality and transmission. IEEE Open Journal of Power Electronics. 2024; 5:583-604.
[22]Sepasi S, Talichet C, Pramanik AS. Power quality in microgrids: a critical review of fundamentals, standards, and case studies. IEEE Access. 2023; 11:108493-8531.
[23]Inci M, Çelik Ö, Lashab A, Bayındır KÇ, Vasquez JC, Guerrero JM. Power system integration of electric vehicles: a review on impacts and contributions to the smart grid. Applied Sciences. 2024; 14(6):1-24.
[24]Rezapour H, Fathnia F, Fiuzy M, Falaghi H, Lopes AM. Enhancing power quality and loss optimization in distorted distribution networks utilizing capacitors and active power filters: a simultaneous approach. International Journal of Electrical Power & Energy Systems. 2024; 155:109590.
[25]Sattar F, Ghosh S, Isbeih YJ, El MMS, Al DA, El FTH. A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration. Applied Energy. 2024; 353:122226.
[26]Yang M, Zhang L, Cui Y, Yang Q, Huang B. The impact of wind field spatial heterogeneity and variability on short-term wind power forecast errors. Journal of Renewable and Sustainable Energy. 2019; 11(3):1-12.
[27]Catalán P, Wang Y, Arza J, Chen Z. A comprehensive overview of power converter applied in high-power wind turbine: key challenges and potential solutions. IEEE Transactions on Power Electronics. 2023; 38(5):6169-95.
[28]Taya BB, Ahammad A, Jahin FI. Total harmonic distortion mitigation and voltage control using distribution static synchronous compensator and hybrid active power filter. International Journal of Advanced Technology and Engineering Exploration. 2024; 11(114):624-43.
[29]Ahmed SD, Al-ismail FS, Shafiullah M, Al-sulaiman FA, El-amin IM. Grid integration challenges of wind energy: a review. IEEE Access. 2020; 8:10857-78.
[30]Mahela OP, Khan B, Alhelou HH, Siano P. Power quality assessment and event detection in distribution network with wind energy penetration using stockwell transform and fuzzy clustering. IEEE Transactions on Industrial Informatics. 2020; 16(11):6922-32.
[31]Benzohra O, Echcharqaouy SS, Fraija F, Saifaoui D. Integrating wind energy into the power grid: impact and solutions. Materials Today: Proceedings. 2020; 30:987-92.
[32]Shao H, Henriques R, Morais H, Tedeschi E. Power quality monitoring in electric grid integrating offshore wind energy: a review. Renewable and Sustainable Energy Reviews. 2024; 191:114094.
[33]Sakti FP, Achmad MH. Increasing voltage stability by installing distributed generation in the Yogyakarta area distribution system using flower pollination algorithm. Transmisi: Jurnal Ilmiah Teknik Elektro; 24(2):74-82.
[34]Morison K, Wang L, Kundur P. Power system security assessment. IEEE Power and Energy Magazine. 2004; 2(5):30-9.
[35]Kurniawan R, Daud M, Hasibuan A. Study of power flow and harmonics when integrating photovoltaic into microgrid. Motivection: Journal of Mechanical, Electrical and Industrial Engineering. 2023; 5(1):33-46.
[36]Rezky PP, Penangsang O, Aryani NK. Transient stability analysis study of the java-madura-bali (jamali) 500kv system after the entry of the 1000 mw paiton power plant in 2021. ITS Technical Journal. 2016; 5(2):A121-7.
[37]Vittal E, Omalley M, Keane A. Rotor angle stability with high penetrations of wind generation. IEEE Transactions on Power Systems. 2011; 27(1):353-62.
[38]Ibe OG, Onyema AI. Concepts of reactive power control and voltage stability methods in power system network. IOSR Journal of Computer Engineering. 2013; 11(2):15-25.
[39]Eremia M, Shahidehpour M. Handbook of electrical power system dynamics: modeling, stability, and control. John Wiley & Sons; 2013.
[40]Guevara MA, Shaban A, Nafisi A. Modeling and load flow analysis of a microgrid laboratory. International Journal of Smart Grid and Sustainable Energy Technologies. 2019; 3(2):103-11.
[41]Kurniawan R, Nasution A, Hasibuan A, Isa M, Gard M, Bhunte SV. The effect of distributed generator injection with different numbers of units on power quality in the electric power system. Journal of Renewable Energy, Electrical, and Computer Engineering. 2021; 1(2):71-8.
[42]Pasaribu FI. Beban non linier dan analisa harmonisa. Jurnal Elektro dan Telkomunikasi. 2021; 5(1):29-34.
[43]Noviando ES. Study of the application of ANN (artificial neural network) to eliminate harmonics in computer center building. Doctoral Dissertation, Riau University. 2016.
[44]Rohaini R. Harmonic analysis on 345 KVA transformer at CV. Wana Indo Raya, Doctoral Dissertation, university of Surabaya. 2021.
[45]Otniel F, Busaeri N, Sutisna S. Analisa aliran daya sistem tenaga listrik pada bagian penyulang 05ee0101a di area utilities II PT. Pertamina (Persero) refinery unit ivcilacap menggunakan metode newton-raphson. Journal of Energy and Electrical Engineering. 2019; 1(1):1-6.
[46]Dani F, Hasibuan A, Asran MJ, Nrarta IM. Simulation and analysis of distributed generation installation in 20 kv distribution system using ETAP 19.0. 2022; 72:443-54.
[47]Dicky M. Analysis of placement and capacity of distributed generation (DG) on voltage profile and power loss in Kain-Riau folding feeder. Doctoral Dissertation, Sultan Syarif Kasim state Islamic university, Riau. 2020.
[48]Yunus S, Ismail I. Studi penempatan dan kapasitas pembangkit tersebar terhadap profil tegangan dan rugi saluran pada saluran marapalam. Jurnal Nasional Teknik Elektro. 2018: 8-17.
[49]Futri AB, Karnoto K, Zahra AA. Analisa harmonisa tegangan dan harmonisa arus pada sistem elektrikal gedung teknik PWK dan teknik arsitektur Universitas Diponegoro. Transient: Jurnal Ilmiah Teknik Elektro. 2020; 9(4):526-31.
[50]Da SDJ, Belati EA, López-lezama JM. A mathematical programming approach for the optimal operation of storage systems, photovoltaic and wind power generation. Energies. 2023; 16(3):1-24.
[51]Foomani AH, Moradlou M, Nazarian P. Utilizing a new voltage stability index in distribution power system in presence of wind turbine units. International Journal of Engineering. 2024; 37(4):711-24.
[52]Ufa RA, Malkova YY, Rudnik VE, Andreev MV, Borisov VA. A review on distributed generation impacts on electric power system. International Journal of Hydrogen Energy. 2022; 47(47):20347-61.
[53]Bajaj M, Singh AK. Grid integrated renewable DG systems: a review of power quality challenges and state‐of‐the‐art mitigation techniques. International Journal of Energy Research. 2020; 44(1):26-69.
[54]Ghaffari A, Askarzadeh A, Fadaeinedjad R, Siano P. Mitigation of total harmonic distortion and flicker emission in the presence of harmonic loads by optimal siting and sizing of wind turbines and energy storage systems. Journal of Energy Storage. 2024; 86:111312.
[55]Mastoi MS, Zhuang S, Haris M, Hassan M, Ali A. Large-scale wind power grid integration challenges and their solution: a detailed review. Environmental Science and Pollution Research. 2023; 30(47):103424-62.